cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177894 Determinant of the square matrix whose rows are the cyclic permutations of the digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, -3, -8, -15, -24, -35, -48, -63, -80, 4, 3, 0, -5, -12, -21, -32, -45, -60, -77, 9, 8, 5, 0, -7, -16, -27, -40, -55, -72, 16, 15, 12, 7, 0, -9, -20, -33, -48, -65, 25, 24, 21, 16, 9, 0, -11, -24, -39, -56, 36, 35, 32, 27, 20, 11, 0, -13, -28, -45, 49, 48, 45, 40, 33, 24, 13, 0, -15, -32, 64, 63, 60, 55, 48, 39, 28, 15, 0, -17, 81, 80, 77, 72, 65, 56, 45, 32
Offset: 0

Views

Author

Michel Lagneau, Dec 15 2010

Keywords

Examples

			for n=104, the (3 X 3) matrix M is
  [1 0 4]
  [0 4 1]
  [4 1 0]
and a(104) = det(M) = -65.
		

Crossrefs

Coincides with A257587 for the first 100 terms, but differs thereafter.

Programs

  • Mathematica
    A177894[n_] := If[n < 10, n, Det[NestList[RotateLeft, IntegerDigits[n], IntegerLength[n]-1]]]; Array[A177894, 100, 0] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    a(n) = {if(n<10, return(n)); my(d = digits(n), m, s); d = concat(d, d); s = #d/2; m = matrix(s, s, i, j, d[i+j-1]); matdet(m)} \\ David A. Corneth, Jun 12 2017
  • Sage
    def A177894(n):
        d = n.digits()[::-1] if n > 0 else [0]
        M = Matrix(lambda i,j: d[(i+j) % len(d)], nrows=len(d))
        return M.determinant() # D. S. McNeil, Dec 16 2010
    

Formula

For n = a, det(M) = a;
for n = ab, det(M) = a^2 - b^2;
for n = abc, det(M) = 3abc - a^3 - b^3 - c^3; ...

A257588 If n = abcd... in decimal, a(n) = |a^2 - b^2 + c^2 - d^2 + ...|.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 0, 3, 8, 15, 24, 35, 48, 63, 80, 4, 3, 0, 5, 12, 21, 32, 45, 60, 77, 9, 8, 5, 0, 7, 16, 27, 40, 55, 72, 16, 15, 12, 7, 0, 9, 20, 33, 48, 65, 25, 24, 21, 16, 9, 0, 11, 24, 39, 56, 36, 35, 32, 27, 20, 11, 0, 13, 28, 45, 49
Offset: 0

Views

Author

N. J. A. Sloane, May 10 2015

Keywords

Comments

a(n) = 0 iff n is in A352535. - Bernard Schott, Jul 08 2022

Crossrefs

Programs

  • Haskell
    a257588 = abs . f 1 where
       f _ 0 = 0
       f s x = s * d ^ 2 + f (negate s) x' where (x', d) = divMod x 10
    -- Reinhard Zumkeller, May 10 2015
    
  • Maple
    a:= n-> (l-> abs(add(l[i]^2*(-1)^i, i=1..nops(l))))(convert(n, base, 10)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Mar 24 2022
  • Mathematica
    Array[Abs@ Total@ MapIndexed[(2 Boole@ EvenQ[First[#2]] - 1) (#1^2) &, IntegerDigits[#]] &, 70] (* Michael De Vlieger, Feb 27 2022 *)
  • PARI
    a(n) = my(d=digits(n)); abs(sum(k=1, #d, (-1)^k*d[k]^2)); \\ Michel Marcus, Feb 27 2022
  • Python
    def A257588(n):
        return abs(sum((int(d)**2*(-1)**j for j,d in enumerate(str(n)))))
    # Chai Wah Wu, May 10 2015
    
Showing 1-2 of 2 results.