cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A175440 Terms in A177950 that are not in A002778.

Original entry on oeis.org

9, 33, 48, 66, 87, 99, 117, 216, 273, 288, 297, 333, 484, 513, 528, 666, 783, 819, 999, 1323, 1331, 1452, 1474, 1602, 2178, 2622, 3333, 4884, 4961, 6666, 7161, 7575, 9999, 10989, 11979, 12969, 14652, 14733, 15972, 20402, 21021, 21534, 21648, 23331
Offset: 1

Views

Author

Zak Seidov, May 16 2010

Keywords

Comments

Terms n in A177950 such that n^2 is palindrome are also in A002778.
This sequence consists of numbers (more interesting?) that are in A177950 but not in A002778.
Notice that most terms are multiples of 3, while some are not: 484, 1331, 1474, 4961, 20402, 48884, 122221, 188887, 217822, 467126, 477773, 484484, 506506, 525503, 718189, 808808, 1461262, 1729408, 2004002, 2317315, 2920819, 4840484.

Crossrefs

Cf. A002778 Numbers whose square is a palindrome, A177950 Numbers n dividing n^2 with digits reversed.

A178028 Numbers n dividing every cyclic permutation of n^2.

Original entry on oeis.org

1, 2, 3, 9, 27, 33, 99, 123, 271, 333, 351, 407, 429, 481, 693, 777, 819, 999, 2151, 3333, 4521, 7227, 7373, 9999, 33333, 81819, 99999, 194841, 326733, 333333, 340067, 366337, 369963, 386139, 389961, 437229, 534391, 623763, 706293, 762377, 863247
Offset: 1

Views

Author

Michel Lagneau, May 17 2010

Keywords

Examples

			123 is a member as all the five cyclic permutations of 123^2 are :
{15129, 51291, 12915, 29151, 91512};
15129 = 123*123 ;
51291 = 123*417 ;
12915 = 123*105 ;
29151 = 123*237 ;
91512 = 123*744.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 100000 do:n0:=n^2:l:=length(n0) :ind:=0:for j
    from 1 to l do:s:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v
    :s:=s+ u*10^m:od:s:=floor(s-u*10^l+u):if irem(s, n)=0 then ind:=ind+1:n0:=s:else
    fi: od:if ind=l then printf(`%d, `, n):else fi: od:
  • Mathematica
    Select[Range[900000],And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^2], n],{n,IntegerLength[#^2]}],#]&] (* Harvey P. Dale, Jul 31 2013 *)
  • Sage
    def cycle(x): return (cp(x) for cp in CyclicPermutationGroup(len(x)))
    is_A178028 = lambda n: all(n.divides(Integer(cx,base=10)) for cx in cycle(str(n**2))) # D. S. McNeil, Jan 08 2011
Showing 1-2 of 2 results.