A242680 Numbers k dividing every cyclic permutation of k^3.
1, 2, 3, 9, 11, 41, 63, 77, 91, 99, 219, 303, 411, 999, 1353, 5291, 6363, 6993, 7777, 8547, 9009, 9191, 9901, 9999, 12561, 23661, 41841, 47027, 75609, 90243, 99999, 110011, 122859, 124533, 125341, 152207, 169983, 170017, 473211, 487179, 513513, 575757, 578369, 626373, 683527, 703703, 740259, 904761, 999001, 999999, 2463661, 2709729, 2754573
Offset: 1
Examples
41 is a term as the cyclic permutations of 41^3 = 68921 are {68921, 89216, 92168, 21689, 16892} and 68921 = 41*1681; 89216 = 41*2176; 92168 = 41*2248; 21689 = 41*529; 16892 = 41*412.
Links
- Robert Israel, Table of n, a(n) for n = 1..130
Crossrefs
Cf. A178028.
Programs
-
Maple
filter:= proc(n) local d,t,r,i; d:= ilog10(n^3); t:= n^3; for i from 1 to d do r:= t mod 10; t:= 10^d*r + (t-r)/10; if not (t/n)::integer then return false fi; od; true end proc: select(filter, [$1..10^7]); # Robert Israel, Jun 04 2019
-
Mathematica
Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^3], n], {n, IntegerLength[#^3]}], #]&]
Extensions
More terms from Robert Israel, Jun 04 2019
Comments