cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242680 Numbers k dividing every cyclic permutation of k^3.

Original entry on oeis.org

1, 2, 3, 9, 11, 41, 63, 77, 91, 99, 219, 303, 411, 999, 1353, 5291, 6363, 6993, 7777, 8547, 9009, 9191, 9901, 9999, 12561, 23661, 41841, 47027, 75609, 90243, 99999, 110011, 122859, 124533, 125341, 152207, 169983, 170017, 473211, 487179, 513513, 575757, 578369, 626373, 683527, 703703, 740259, 904761, 999001, 999999, 2463661, 2709729, 2754573
Offset: 1

Views

Author

Michel Lagneau, May 20 2014

Keywords

Comments

Includes k if 10^(d-1) <= k^3 < 10^d and k | 10^d-1. Is 2 the only member of the sequence that is not of this form? - Robert Israel, Jun 04 2019

Examples

			41 is a term as the cyclic permutations of 41^3 = 68921 are {68921, 89216, 92168, 21689, 16892}
and
  68921 = 41*1681;
  89216 = 41*2176;
  92168 = 41*2248;
  21689 = 41*529;
  16892 = 41*412.
		

Crossrefs

Cf. A178028.

Programs

  • Maple
    filter:= proc(n) local d,t,r,i;
      d:= ilog10(n^3);
      t:= n^3;
      for i from 1 to d do
        r:= t mod 10;
        t:= 10^d*r + (t-r)/10;
        if not (t/n)::integer then return false fi;
      od;
      true
    end proc:
    select(filter, [$1..10^7]); # Robert Israel, Jun 04 2019
  • Mathematica
    Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^3], n], {n, IntegerLength[#^3]}], #]&]

Extensions

More terms from Robert Israel, Jun 04 2019

A177928 Let n be the number whose square n^2 has the decimal expansion { d(1) d(2) ... d(D) }, and let q be the corresponding number whose decimal expansion is { d(2) d(3) ... d(D) d(1)}. Sequence lists numbers n dividing q.

Original entry on oeis.org

1, 2, 3, 9, 27, 33, 66, 99, 123, 246, 271, 333, 351, 407, 429, 462, 481, 518, 546, 567, 666, 693, 702, 715, 777, 814, 819, 924, 936, 999, 1434, 2151, 2868, 3333, 4521, 4818, 6666, 7227, 7373, 7535, 8631, 9042, 9999, 33333, 53658, 54546, 66666, 80487, 81819
Offset: 1

Views

Author

Michel Lagneau, May 15 2010

Keywords

Comments

A178028 is a subsequence of this sequence.
When n divides q, n divides d(D)*(10^D - 1) because q = 10*n^2 - d(D)*(10^D - 1). If n is prime, n divides (10^D - 1); for example, the prime term 271 divides 10^5 - 1 = 99999 = 271*369.

Examples

			429 is in the sequence because 429^2 = 184041 and 840411/429 = 1959.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 10^6 do: d:=convert(n^2, base, 10):n1:=nops(d):s:=sum('d[i]*10^i','i'=1..n1-1)+d[n1]:if irem(s,n)=0 then printf(`%d, `,n):else fi:od:
  • Mathematica
    Select[Range[100000], Mod[FromDigits[RotateLeft[IntegerDigits[#^2]]], #] == 0 &] (* T. D. Noe, Jul 27 2012 *)

A242740 Numbers n dividing every cyclic permutation of n^4.

Original entry on oeis.org

1, 3, 9, 21, 27, 73, 99, 111, 271, 693, 707, 777, 819, 909, 999, 2151, 2629, 3441, 3813, 4551, 6987, 7227, 7373, 9999, 18981, 19019, 20007, 20979, 23199, 24453, 25641, 27027, 27417, 30303, 81819, 82113, 83883, 99999, 125523, 172013, 194841, 201917, 238139
Offset: 1

Views

Author

Michel Lagneau, May 21 2014

Keywords

Comments

Property of the sequence :
Consider the sequence A178028 (Numbers n dividing every cyclic permutation of n^2), so
a(1) = A178028 (1) = 1;
a(5) = A178028 (5) = 27;
a(7) = A178028 (7) = 99;
a(9) = A178028 (9) = 271;
a(10) = A178028 (15) = 693;
a(13) = A178028 (17) = 819;
a(15) = A178028 (18) = 999;
a(16) = A178028 (19) = 2151;
a(22) = A178028 (22) = 7227;
...........................

Examples

			21 is a member as all the six cyclic permutations of 21^4 = 194481 are :
{194481, 944811, 448119, 481194, 811944, 119448} and :
194481 = 21*9261;
944811 = 21*44991;
448119 = 21*21339;
811944 = 21*38664;
119448 = 21*5688.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^4], n], {n, IntegerLength[#^4]}], #]&]

A262814 Numbers k dividing every cyclic permutation of k^k.

Original entry on oeis.org

1, 2, 3, 7, 9, 11, 27, 63, 99, 111, 129, 159, 231, 271, 273, 303, 333, 351, 357, 403, 457, 711, 991, 999, 1111, 1147, 1241, 2121, 2479, 4227, 4653, 5151, 5547, 5837, 6191, 6237, 6643, 6993, 7133, 8229, 8547, 8683, 8811, 8987, 9009, 9633, 9999, 11009, 13449, 13531
Offset: 1

Views

Author

Michel Lagneau, Oct 03 2015

Keywords

Comments

Conjecture: 10^n-1 is a term of the sequence for all n > 0. - Chai Wah Wu, Nov 03 2015

Examples

			7 is a member as the six cyclic permutations of 7^7 = 823543 are {823543, 382354, 438235, 543823, 354382, 235438} and these 6 integers are divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^#], n], {n, IntegerLength[#^#]}], #]&]
  • PARI
    isok(n) = {my(nn = n^n); for (j=1, #Str(nn)-1, cp = eval(Str(nn%10^j, nn\10^j)); if (cp % n, return (0));); return (1);} \\ Michel Marcus, Oct 11 2015
    
  • Python
    A262814_list = []
    for k in range(1,10**3):
        n = k**k
        if not n % k:
            s = str(n)
            for i in range(len(s)-1):
                s = s[1:]+s[0]
                if int(s) % k:
                    break
            else:
                A262814_list.append(k) # Chai Wah Wu, Oct 26 2015

Extensions

a(24)-a(27) from Michel Marcus, Oct 11 2015
a(28)-a(50) from Chai Wah Wu, Oct 26 2015
Showing 1-4 of 4 results.