A131282 Period 6: repeat [1, 2, 3, 3, 4, 5].
1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
Crossrefs
Cf. A178038 (decimal expansion of (161+sqrt(44310))/259). - Klaus Brockhaus, May 17 2010
Programs
-
Magma
&cat [[1, 2, 3, 3, 4, 5]^^20]; // Wesley Ivan Hurt, Jun 20 2016
-
Maple
A131282:=n->[1, 2, 3, 3, 4, 5][(n mod 6)+1]: seq(A131282(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016
-
Mathematica
PadLeft[{}, 18*6, {1,2,3,3,4,5}] (* Harvey P. Dale, Sep 23 2011 *)
-
PARI
a(n)=1+n%6-n%6\3 \\ Jaume Oliver Lafont, Aug 28 2009
Formula
a(n) = 3 - 2*cos(Pi*n/3)/3 - 2*sin(Pi*n/3)/sqrt(3) - cos(2*Pi*n/3) - sin(2*Pi*n/3)/sqrt(3) - (-1)^n/3. - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 20 2016: (Start)
G.f.: (1+2*x+3*x^2+3*x^3+4*x^4+5*x^5)/(1-x^6).
a(n) = a(n-6) for n>5. (End)
Comments