A178081 A (1,1) Somos-4 sequence.
0, 1, 1, -1, 2, 3, 1, -11, -16, 35, -129, -299, -386, 3977, 8063, -42489, 269344, 1000009, 3727745, -47166649, -123526014, 1764203419, -18228952703, -113727892147, -1065812586544, 18344075481339, 52130069331199, -2470319425874195
Offset: 0
Examples
G.f. = x + x^2 - x^3 + 2*x^4 + 3*x^5 + x^6 - 11*x^7 - 16*x^8 + 35*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..215
- C. Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
- LMFDB, Elliptic Curve 79.a1 (Cremona label 79a1)
Crossrefs
Cf. A174017.
Programs
-
GAP
a:=[1,1,-1,2];; for n in [5..30] do a[n]:=(a[n-1]*a[n-3]+a[n-2]^2)/a[n-4]; od; a:=Concatenation([0],a); # Muniru A Asiru, Sep 23 2018
-
Magma
I:=[0,1,1,-1,2]; [n le 5 select I[n] else (Self(n-1)*Self(n-3)+Self(n-2)^2)/Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 06 2014
-
Mathematica
Join[{0},RecurrenceTable[{a[1]==1,a[2]==1,a[3]==-1,a[4]==2,a[n]==(a[n-1]a[n-3]+a[n-2]^2)/a[n-4]},a,{n,30}]] (* Harvey P. Dale, Sep 07 2016 *)
-
PARI
a(n)=local(E,z);E=ellinit([1,1,-1,-1,0]);z=ellpointtoz(E,[0,0]); round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2)) /* Paul Barry, May 31 2010 */
-
SageMath
@CachedFunction def a(n): # a = A178081 if (n<5): return (0, 1, 1, -1, 2)[n] else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4) [a(n) for n in range(41)] # G. C. Greubel, Feb 16 2023
Formula
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), n>=4.
a(-n) = -a(n) for all n in Z. - Michael Somos, Aug 06 2014
Extensions
a(0)=0 prepended by Michael Somos, Aug 06 2014
a(1)=1 added also by Michael Somos, Feb 15 2023
Comments