cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253182 The continued fraction expansion of e! (A178394).

Original entry on oeis.org

4, 3, 1, 5, 38, 2, 1, 65, 1, 1, 2, 2, 3, 5, 1, 1, 38, 1, 1, 1, 5, 16, 1, 1, 1, 1, 5, 1, 97, 1, 1, 1, 1, 1, 1, 10, 4, 1, 6, 3, 3, 10, 6, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 4, 5, 1, 14, 2, 5, 12, 2, 2, 2, 2, 1, 3, 2, 1, 1, 2, 4, 1, 1, 6, 3, 1, 4, 2, 1, 1, 1, 1
Offset: 0

Views

Author

Robert G. Wilson v, Mar 23 2015

Keywords

Comments

The increasing partial quotients (after the initial 4) are 3, 5, 38, 65, 97, 98, 239, 644, 3395, 11360, 14473, 263721, ..., .

Examples

			Gamma(e+1) = 4.2608204763570033817001212246457024649334243739593219749116...
= 4 + 1/(3 + 1/(1 + 1/(5 + 1/(38 + ...))))
= [a_0; a_1, a_2, a_3, ...] = [4; 3, 1, 5, 38, ...]
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[E!, 90]
  • PARI
    default(realprecision, 100); contfrac(gamma(exp(1)+1)) \\ Michel Marcus, Mar 24 2015

A178840 Decimal expansion of the factorial of Golden Ratio.

Original entry on oeis.org

1, 4, 4, 9, 2, 2, 9, 6, 0, 2, 2, 6, 9, 8, 9, 6, 6, 0, 0, 3, 7, 7, 8, 7, 9, 7, 9, 0, 6, 2, 9, 7, 6, 8, 3, 3, 7, 0, 8, 4, 0, 8, 9, 8, 9, 0, 9, 6, 6, 6, 7, 6, 0, 7, 5, 3, 3, 7, 0, 2, 3, 8, 5, 8, 1, 3, 8, 9, 1, 1, 8, 0, 7, 9, 4, 2, 7, 9, 7, 4, 7, 1, 9, 1, 2, 9, 4, 0, 4, 9, 1, 6, 9, 6, 5, 7, 0, 3, 1, 4, 2, 8, 5, 4, 3
Offset: 1

Views

Author

Keywords

Examples

			1.44922960226989660037787979062976833708408989096667607533702385813891...
		

Crossrefs

Cf. A001622 (golden ratio).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma((Sqrt(5)-1)/2); // G. C. Greubel, Jan 21 2019
    
  • Maple
    evalf(GAMMA(1+evalf((1+sqrt(5))/2,100)),106); # Golden ratio
  • Mathematica
    RealDigits[Gamma[(Sqrt[5] - 1)/2], 10, 120][[1]] (* Vaclav Kotesovec, Jan 20 2019 *)
  • PARI
    default(realprecision, 100); gamma((sqrt(5)-1)/2) \\ G. C. Greubel, Jan 21 2019
    
  • Sage
    numerical_approx(gamma(1/golden_ratio), digits=100) # G. C. Greubel, Jan 21 2019

Formula

Factorial of Golden Ratio = Gamma(1 + phi) = Gamma((3 + sqrt(5))/2). - Bernard Schott, Jan 21 2019
Equals Gamma((sqrt(5) - 1)/2). - Vaclav Kotesovec, Jan 21 2019

A178839 Decimal expansion of the factorial of Euler-Mascheroni constant.

Original entry on oeis.org

8, 9, 1, 1, 5, 2, 7, 2, 6, 1, 3, 1, 4, 6, 3, 8, 5, 6, 1, 6, 3, 3, 3, 9, 6, 8, 9, 0, 5, 0, 4, 6, 6, 4, 9, 1, 7, 8, 4, 7, 1, 1, 1, 2, 6, 2, 2, 7, 3, 6, 3, 7, 5, 7, 2, 8, 9, 2, 2, 7, 6, 8, 2, 2, 8, 1, 0, 9, 8, 8, 2, 5, 2, 7, 7, 9, 2, 4, 4, 0, 7, 8, 6, 5, 0, 0, 3, 7, 9, 9, 8, 3, 1, 3, 8, 4, 7, 7, 2, 4, 2, 4, 6, 4, 5
Offset: 0

Views

Author

Keywords

Examples

			0.891152726131463856163339689050466491784711126227363757289227682281...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Gamma(EulerGamma(R) + 1); // G. C. Greubel, Jan 21 2019
    
  • Maple
    evalf(GAMMA(1+evalf(gamma,100)),106); # Euler-Mascheroni
  • Mathematica
    RealDigits[Gamma[1 + EulerGamma], 10, 120][[1]] (* Vaclav Kotesovec, Jan 20 2019 *)
  • PARI
    default(realprecision, 100); gamma(1 + Euler) \\ G. C. Greubel, Jan 21 2019
    
  • Sage
    numerical_approx(gamma(1 + euler_gamma), digits=100) # G. C. Greubel, Jan 21 2019

Extensions

Offset corrected by Vaclav Kotesovec, Jan 20 2019
Showing 1-3 of 3 results.