cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178487 a(n) = floor(n^(1/5)): integer part of fifth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 09 2010

Keywords

Comments

Each term k appears (k+1)^5 - k^5 times consecutively (A022521). - Bernard Schott, Mar 07 2023

Crossrefs

Sequences a(n) = floor(n^(1/k)): A001477 (k=1), A000196 (k=2), A048766 (k=3), A255270 (k=4), this sequence (k= 5), A178489 (k=6), A057427 (k->oo).

Programs

  • Magma
    [n eq 0 select 0 else Iroot(n, 5): n in [0..110]]; // Bruno Berselli, Feb 20 2015
    
  • Maple
    seq(floor(n^(1/5)), n=0..100); # Ridouane Oudra, Feb 26 2023
  • Mathematica
    Floor[Range[0,120]^(1/5)] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    A178487(n)=floor(sqrtn(n+.5,5))
    
  • PARI
    a(n) = sqrtnint(n, 5); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A178487(n): return integer_nthroot(n,5)[0] # Chai Wah Wu, Jun 06 2025

Formula

G.f.: Sum_{k>=1} x^(k^5)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A253206(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023