A178487 a(n) = floor(n^(1/5)): integer part of fifth root of n.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Crossrefs
Programs
-
Magma
[n eq 0 select 0 else Iroot(n, 5): n in [0..110]]; // Bruno Berselli, Feb 20 2015
-
Maple
seq(floor(n^(1/5)), n=0..100); # Ridouane Oudra, Feb 26 2023
-
Mathematica
Floor[Range[0,120]^(1/5)] (* Harvey P. Dale, Aug 15 2012 *)
-
PARI
A178487(n)=floor(sqrtn(n+.5,5))
-
PARI
a(n) = sqrtnint(n, 5); \\ Michel Marcus, Dec 22 2016
-
Python
from sympy import integer_nthroot def A178487(n): return integer_nthroot(n,5)[0] # Chai Wah Wu, Jun 06 2025
Formula
G.f.: Sum_{k>=1} x^(k^5)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A253206(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023
Comments