cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255270 Integer part of fourth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2015

Keywords

Comments

n appears (n+1)^4 - n^4 times (A005917).

Crossrefs

Cf. A005917.
Cf. sequences of the type floor(n^(1/k)): A000196 (k=2), A048766 (k=3), this sequence (k=4), A178487 (k=5), A178489 (k=6).
Cf. A219009.

Programs

  • Magma
    [IsZero(n) select 0 else Iroot(n, 4): n in [0..100]];
    
  • Magma
    [Floor(n^(1/4)): n in [0..100]]; // Vincenzo Librandi, Feb 20 2015
    
  • Maple
    A255270 := proc(n)
        floor( n^(1/4)) ;
    end proc:
    seq(A255270(n),n=0..100) ; # R. J. Mathar, May 08 2020
  • Mathematica
    Floor[Range[0, 100]^(1/4)]
  • PARI
    vector(100, n, n--; floor(n^(1/4)))
    
  • PARI
    a(n) = sqrtnint(n, 4); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A255270(n): return integer_nthroot(n,4)[0] # Chai Wah Wu, Jun 06 2025
  • Sage
    [floor(n^(1/4)) for n in (0..100)]
    

Formula

a(n) = floor(n^(1/4)) = floor(sqrt(A000196(n))).
G.f.: Sum_{k>=1} x^(k^4)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A219009(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023

A178489 a(n) = floor(n^(1/6)): integer part of sixth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 09 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[Power[Range[0,110], (6)^-1]] (* Harvey P. Dale, Jul 18 2011 *)
  • PARI
    A178489(n)=floor(sqrtn(n+.5,6))
    
  • PARI
    a(n) = sqrtnint(n, 6); \\ Michel Marcus, Dec 22 2016

Formula

G.f.: Sum_{k>=1} x^(k^6)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016

A032513 Sum of the integer part of 5th roots of positive integers less than or equal to n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Crossrefs

Partial sums of A178487.

Programs

  • Mathematica
    Accumulate[Floor[Surd[Range[0,70],5]]] (* Harvey P. Dale, Jan 21 2019 *)
  • PARI
    a(n) = sum(k=1, n, sqrtnint(k, 5)); \\ Michel Marcus, Mar 12 2016

Formula

G.f.: Sum_{k>=1} x^(k^5)/(1 - x)^2. - Ilya Gutkovskiy, Dec 22 2016
a(n) = -(1/12) * floor(n^(1/5)) * (-12 - 12*n - floor(n^(1/5)) + 5*floor(n^(1/5))^3 + 6*floor(n^(1/5))^4 + 2*floor(n^(1/5))^5). - Pooya Farshim, Sep 28 2024

A381042 Alternating sum of floor(n^(1/k)), with k >= 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Friedjof Tellkamp, Apr 14 2025

Keywords

Examples

			n:       0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
k=2 (+): 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, ... (A000196)
k=3 (-): 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, ... (A048766)
...
Sum:     0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ... (= this sequence).
		

Crossrefs

Cf. A000196 (k=2), A048766 (k=3), A255270 (k=4), A178487 (k=5), A178489 (k=6).
Cf. A089361 (nonalternating), A382691, A382692.

Programs

  • Mathematica
    z = 100; Table[Sum[(-1)^k Floor[n^(1/k)], {k, 2, 2 Floor@Log[2, z/2] - 1}], {n, 0, z}]

Formula

a(n) = A000196(n) - A048766(n) + A255270(n) - A178487(n) + ... .
a(n) = Sum_{k>=2} (-1)^k * floor(n^(1/k)) = Sum_{k>=1} (floor(n^(1/(2*k))) - floor(n^(1/(2*k+1)))).
a(n) = Sum_{i=1..n} A382691(i).
a(n) ~ A382692(n).
G.f.: Sum_{j>=1, k>=2} (-1)^k * x^(j^k)/(1-x).

A132336 Sum of the integers from 1 to n, excluding perfect fifth powers.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 495, 528, 562, 597, 633, 670, 708, 747, 787, 828, 870, 913, 957, 1002, 1048, 1095, 1143, 1192, 1242, 1293, 1345, 1398, 1452
Offset: 1

Views

Author

Cino Hilliard, Nov 07 2007

Keywords

Examples

			a(1)=0+1, excluding 0 and 1, so a(1)=0.
a(2)=0+1+2, excluding 0 and 1, so a(2)=2.
a(3)=0+1+2+3, excluding 0 and 1, so a(3)=2+3=5.
		

Crossrefs

Different from A000096.
Cf. A132337.

Programs

  • Maple
    A000217 := proc(n) n*(n+1)/2 ; end proc:
    A000539 := proc(n) (2*n^6+6*n^5+5*n^4-n^2)/12 ; end proc:
    A132336 := proc(n) r := floor(n^(1/5)) ; A000217(n)-A000539(r); end proc: seq(A132336(n),n=1..40) ;
  • PARI
    g5(n)=for(x=1, n, r=floor(x^(1/5)); sum5=(2*r^6+6*r^5+5*r^4-r^2)/12; sn=x* (x+1)/2; print1(sn-sum5, ", "))
    
  • PARI
    a(n) = my(r=sqrtnint(n,5)); n*(n+1)/2 - (2*r^6+6*r^5+5*r^4-r^2)/12; \\ Ruud H.G. van Tol, Nov 02 2023
    
  • Python
    from sympy import integer_nthroot
    def A132336(n): return n*(n+1)-(m:=integer_nthroot(n,5)[0])**2*(m**2*(m*(m+3<<1)+5)-1)//6>>1 # Chai Wah Wu, Jun 06 2025

Formula

a(n) = A000217(n) - A000539(r) where r = floor(n^(1/5)).
a(n) = n(n+1)/2 - (2r^6 + 6r^5 + 5r^4 - r^2)/12.
a(n) = A000217(n) - A000539(r) where r= A178487(n). - R. J. Mathar, Oct 12 2010

Extensions

Edited by the Assoc. Editors of the OEIS, Oct 12 2010. Thanks to Daniel Mondot for pointing out that the sequence needed editing.

A382692 a(n) = floor of alternating sum of k-th roots of n, with k >= 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6
Offset: 0

Views

Author

Friedjof Tellkamp, Apr 05 2025

Keywords

Examples

			a(15) = floor(15^(1/2) - 15^(1/3) + 15^(1/4) - ...) = floor(1.9701...) = 1.
		

Crossrefs

Cf. A000196 (k=2), A048766 (k=3), A255270 (k=4), A178487 (k=5), A178489 (k=6).

Programs

  • Mathematica
    Floor@Table[NSum[n^(1/(2 k)) - n^(1/(2 k + 1)), {k, 1, Infinity}, WorkingPrecision -> 30], {n, 1, 100}]

Formula

a(n) = floor(Sum_{k>=2} (-1)^k * n^(1/k)) = floor(Sum_{k>=1} (n^(1/(2*k)) - n^(1/(2*k + 1)))).
a(n) ~ A381042(n).
Series expansion of Sum_{k>=2} (-1)^k * x^(1/k) at x=1: Sum_{i>=0} A(i) * (x-1)^i/i!, where A(i) = KroneckerDelta(i, 1) - Sum_{j=1..i} eta(j) * StirlingS1(i, j), with eta as the Dirichlet eta function.
Showing 1-6 of 6 results.