cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255270 Integer part of fourth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Bruno Berselli, Feb 20 2015

Keywords

Comments

n appears (n+1)^4 - n^4 times (A005917).

Crossrefs

Cf. A005917.
Cf. sequences of the type floor(n^(1/k)): A000196 (k=2), A048766 (k=3), this sequence (k=4), A178487 (k=5), A178489 (k=6).
Cf. A219009.

Programs

  • Magma
    [IsZero(n) select 0 else Iroot(n, 4): n in [0..100]];
    
  • Magma
    [Floor(n^(1/4)): n in [0..100]]; // Vincenzo Librandi, Feb 20 2015
    
  • Maple
    A255270 := proc(n)
        floor( n^(1/4)) ;
    end proc:
    seq(A255270(n),n=0..100) ; # R. J. Mathar, May 08 2020
  • Mathematica
    Floor[Range[0, 100]^(1/4)]
  • PARI
    vector(100, n, n--; floor(n^(1/4)))
    
  • PARI
    a(n) = sqrtnint(n, 4); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A255270(n): return integer_nthroot(n,4)[0] # Chai Wah Wu, Jun 06 2025
  • Sage
    [floor(n^(1/4)) for n in (0..100)]
    

Formula

a(n) = floor(n^(1/4)) = floor(sqrt(A000196(n))).
G.f.: Sum_{k>=1} x^(k^4)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A219009(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023

A178487 a(n) = floor(n^(1/5)): integer part of fifth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 09 2010

Keywords

Comments

Each term k appears (k+1)^5 - k^5 times consecutively (A022521). - Bernard Schott, Mar 07 2023

Crossrefs

Sequences a(n) = floor(n^(1/k)): A001477 (k=1), A000196 (k=2), A048766 (k=3), A255270 (k=4), this sequence (k= 5), A178489 (k=6), A057427 (k->oo).

Programs

  • Magma
    [n eq 0 select 0 else Iroot(n, 5): n in [0..110]]; // Bruno Berselli, Feb 20 2015
    
  • Maple
    seq(floor(n^(1/5)), n=0..100); # Ridouane Oudra, Feb 26 2023
  • Mathematica
    Floor[Range[0,120]^(1/5)] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    A178487(n)=floor(sqrtn(n+.5,5))
    
  • PARI
    a(n) = sqrtnint(n, 5); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A178487(n): return integer_nthroot(n,5)[0] # Chai Wah Wu, Jun 06 2025

Formula

G.f.: Sum_{k>=1} x^(k^5)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A253206(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023

A132337 Sum of the integers from 1 to n, excluding the perfect sixth powers.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484
Offset: 1

Views

Author

Cino Hilliard, Nov 07 2007

Keywords

Crossrefs

Different from A000096.

Programs

  • Maple
    A132337 := proc(n) r := floor(n^(1/6)) ; A000217(n)-A000540(r); end proc: seq(A132337(n),n=1..40) ; # R. J. Mathar
  • Mathematica
    Accumulate[Table[If[IntegerQ[Surd[n,6]],0,n],{n,60}]] (* Harvey P. Dale, Jun 01 2022 *)
  • PARI
    g6(n)=for(x=1,n,r=floor(x^(1/6));sum6=r^7/7+r^6/2+r^5/2-r^3/6+r/ 42;sn=x* (x+1)/2;print1(sn-sum6","))
    
  • PARI
    A132337(n)=n*(n+1)/2-(1+n=floor(sqrtn(n+.5,6)))*(2*n+1)*((n^3+2*n^2-1)*n*3+1)*n/42 \\ M. F. Hasler, Oct 09 2010

Formula

Let r = floor(n^(1/6)). Then a(n) = n(n+1)/2 - (r^7/7 + r^6/2 + r^5/2 - r^3/6 + r/42) = A000217(n) - A000540(r).
a(n) = A000217(n) - A000540(A178489(n)). - M. F. Hasler, Oct 09 2010

Extensions

Incorrect formula deleted by Jon E. Schoenfield, Jun 12 2010
Incorrect program replaced by R. J. Mathar, Oct 08 2010
Edited by the Assoc. Editors of the OEIS, Oct 12 2010. Thanks to Daniel Mondot for pointing out that the sequence needed editing.
Incorrect linear recurrence removed by Georg Fischer, Apr 11 2019

A381042 Alternating sum of floor(n^(1/k)), with k >= 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Friedjof Tellkamp, Apr 14 2025

Keywords

Examples

			n:       0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
k=2 (+): 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, ... (A000196)
k=3 (-): 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, ... (A048766)
...
Sum:     0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ... (= this sequence).
		

Crossrefs

Cf. A000196 (k=2), A048766 (k=3), A255270 (k=4), A178487 (k=5), A178489 (k=6).
Cf. A089361 (nonalternating), A382691, A382692.

Programs

  • Mathematica
    z = 100; Table[Sum[(-1)^k Floor[n^(1/k)], {k, 2, 2 Floor@Log[2, z/2] - 1}], {n, 0, z}]

Formula

a(n) = A000196(n) - A048766(n) + A255270(n) - A178487(n) + ... .
a(n) = Sum_{k>=2} (-1)^k * floor(n^(1/k)) = Sum_{k>=1} (floor(n^(1/(2*k))) - floor(n^(1/(2*k+1)))).
a(n) = Sum_{i=1..n} A382691(i).
a(n) ~ A382692(n).
G.f.: Sum_{j>=1, k>=2} (-1)^k * x^(j^k)/(1-x).

A365335 The number of exponentially odd coreful divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A160338 at n = 64, and from A178489 at n = 65.
The number of divisors of the square root of the largest square dividing n is A046951(n).
The number of exponentially odd divisors of the square root of the largest square dividing n is A365549(n) and their sum is A365336(n). [corrected, Sep 08 2023]

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Max[1, Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(1, (x+2)\4), factor(n)[, 2]));

Formula

a(n) = A325837(A000188(n)).
a(n) > 1 if and only if n is a bicubeful number (A355265).
Multiplicative with a(p^e) = floor((e+2)/4).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 - 1/p^(4*s) + 1/p^(6*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.0181534831085... .

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A382692 a(n) = floor of alternating sum of k-th roots of n, with k >= 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6
Offset: 0

Views

Author

Friedjof Tellkamp, Apr 05 2025

Keywords

Examples

			a(15) = floor(15^(1/2) - 15^(1/3) + 15^(1/4) - ...) = floor(1.9701...) = 1.
		

Crossrefs

Cf. A000196 (k=2), A048766 (k=3), A255270 (k=4), A178487 (k=5), A178489 (k=6).

Programs

  • Mathematica
    Floor@Table[NSum[n^(1/(2 k)) - n^(1/(2 k + 1)), {k, 1, Infinity}, WorkingPrecision -> 30], {n, 1, 100}]

Formula

a(n) = floor(Sum_{k>=2} (-1)^k * n^(1/k)) = floor(Sum_{k>=1} (n^(1/(2*k)) - n^(1/(2*k + 1)))).
a(n) ~ A381042(n).
Series expansion of Sum_{k>=2} (-1)^k * x^(1/k) at x=1: Sum_{i>=0} A(i) * (x-1)^i/i!, where A(i) = KroneckerDelta(i, 1) - Sum_{j=1..i} eta(j) * StirlingS1(i, j), with eta as the Dirichlet eta function.
Showing 1-6 of 6 results.