cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A178487 a(n) = floor(n^(1/5)): integer part of fifth root of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

M. F. Hasler, Oct 09 2010

Keywords

Comments

Each term k appears (k+1)^5 - k^5 times consecutively (A022521). - Bernard Schott, Mar 07 2023

Crossrefs

Sequences a(n) = floor(n^(1/k)): A001477 (k=1), A000196 (k=2), A048766 (k=3), A255270 (k=4), this sequence (k= 5), A178489 (k=6), A057427 (k->oo).

Programs

  • Magma
    [n eq 0 select 0 else Iroot(n, 5): n in [0..110]]; // Bruno Berselli, Feb 20 2015
    
  • Maple
    seq(floor(n^(1/5)), n=0..100); # Ridouane Oudra, Feb 26 2023
  • Mathematica
    Floor[Range[0,120]^(1/5)] (* Harvey P. Dale, Aug 15 2012 *)
  • PARI
    A178487(n)=floor(sqrtn(n+.5,5))
    
  • PARI
    a(n) = sqrtnint(n, 5); \\ Michel Marcus, Dec 22 2016
    
  • Python
    from sympy import integer_nthroot
    def A178487(n): return integer_nthroot(n,5)[0] # Chai Wah Wu, Jun 06 2025

Formula

G.f.: Sum_{k>=1} x^(k^5)/(1 - x). - Ilya Gutkovskiy, Dec 22 2016
a(n) = Sum_{i=1..n} A253206(i)*floor(n/i). - Ridouane Oudra, Feb 26 2023

A032512 Sum of the integer part of 4th roots of integers <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Crossrefs

Partial sums of A255270.

Programs

  • Mathematica
    Accumulate[Floor[Surd[Range[0,70],4]]] (* Harvey P. Dale, Dec 14 2024 *)
  • PARI
    a(n) = sum(k=1, n, sqrtnint(k, 4)); \\ Michel Marcus, Mar 12 2016

Formula

G.f.: Sum_{k>=1} x^(k^4)/(1 - x)^2. - Ilya Gutkovskiy, Dec 22 2016
a(n) = -(1/30) * floor(n^(1/4)) * (-31 - 30 * n + 10 * floor(n^(1/4))^2 + 15 * floor(n^(1/4))^3 + 6 * floor(n^(1/4))^4). - Pooya Farshim, Sep 28 2024

Extensions

NAME adapted to offset. - Giovanni Resta, May 08 2020

A216284 Number of solutions to the equation x^4+y^4 = n with x >= y > 0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

V. Raman, Sep 03 2012

Keywords

Examples

			From _Antti Karttunen_, Aug 28 2017: (Start)
For n = 2 there is one solution: 2 = 1^4 + 1^4, thus a(2) = 1.
For n = 17 there is one solution: 17 = 2^4 + 1^4, thus a(17) = 1.
For n = 635318657 we have two solutions: 635318657 = 158^4 + 59^4 = 134^4 + 133^4, thus a(635318657) = 2. Note that this is the first point where the sequence attains value greater than 1. See _Charles R Greathouse IV_'s Jan 12 2017 comment in A216280.
(End)
		

Crossrefs

Programs

Formula

a(n) <= A216280(n). - Antti Karttunen, Aug 28 2017

Extensions

Definition edited to match the given data and the second part of offset (635318657) explicitly added by Antti Karttunen, Aug 28 2017

A381042 Alternating sum of floor(n^(1/k)), with k >= 2.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Friedjof Tellkamp, Apr 14 2025

Keywords

Examples

			n:       0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
k=2 (+): 0, 1, 1, 1, 2, 2, 2, 2, 2, 3, ... (A000196)
k=3 (-): 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, ... (A048766)
...
Sum:     0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ... (= this sequence).
		

Crossrefs

Cf. A000196 (k=2), A048766 (k=3), A255270 (k=4), A178487 (k=5), A178489 (k=6).
Cf. A089361 (nonalternating), A382691, A382692.

Programs

  • Mathematica
    z = 100; Table[Sum[(-1)^k Floor[n^(1/k)], {k, 2, 2 Floor@Log[2, z/2] - 1}], {n, 0, z}]

Formula

a(n) = A000196(n) - A048766(n) + A255270(n) - A178487(n) + ... .
a(n) = Sum_{k>=2} (-1)^k * floor(n^(1/k)) = Sum_{k>=1} (floor(n^(1/(2*k))) - floor(n^(1/(2*k+1)))).
a(n) = Sum_{i=1..n} A382691(i).
a(n) ~ A382692(n).
G.f.: Sum_{j>=1, k>=2} (-1)^k * x^(j^k)/(1-x).

A382692 a(n) = floor of alternating sum of k-th roots of n, with k >= 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6
Offset: 0

Views

Author

Friedjof Tellkamp, Apr 05 2025

Keywords

Examples

			a(15) = floor(15^(1/2) - 15^(1/3) + 15^(1/4) - ...) = floor(1.9701...) = 1.
		

Crossrefs

Cf. A000196 (k=2), A048766 (k=3), A255270 (k=4), A178487 (k=5), A178489 (k=6).

Programs

  • Mathematica
    Floor@Table[NSum[n^(1/(2 k)) - n^(1/(2 k + 1)), {k, 1, Infinity}, WorkingPrecision -> 30], {n, 1, 100}]

Formula

a(n) = floor(Sum_{k>=2} (-1)^k * n^(1/k)) = floor(Sum_{k>=1} (n^(1/(2*k)) - n^(1/(2*k + 1)))).
a(n) ~ A381042(n).
Series expansion of Sum_{k>=2} (-1)^k * x^(1/k) at x=1: Sum_{i>=0} A(i) * (x-1)^i/i!, where A(i) = KroneckerDelta(i, 1) - Sum_{j=1..i} eta(j) * StirlingS1(i, j), with eta as the Dirichlet eta function.

A339276 Nearest integer to the fourth root of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 13 2020

Keywords

Examples

			a(1) = 1 since 1^(1/4) = 1.
a(6) = 2 since 6^(1/4) = 1.565... and its nearest integer is 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Round[Surd[n, 4]], {n, 1, 100}]
  • Python
    from sympy import integer_nthroot
    def A339276(n): return (m:=integer_nthroot(n,4)[0])+((n<<4)>=((m<<1)+1)**4) # Chai Wah Wu, Jun 06 2025

Formula

Sum_{n>=1} 1/a(n)^s = 4*zeta(s-3) + zeta(s-1), for s>4 (Borwein, 1994).

A373652 Composite numbers k for which g = gcd(f(i*c), k) = 1 or k for all i in the range 1 <= i <= c, where f(x) = Product_{j=1..c} x+j and c = floor(k^(1/4)).

Original entry on oeis.org

9, 15, 49, 77, 169, 221, 247, 323, 529, 961, 1147, 1271, 1517, 1680, 1849, 2021, 2209, 2279, 2520, 2688, 2880, 3360, 3481, 3599, 3721, 3953, 4032, 4087, 4320, 4480, 4536, 4757, 5040, 5184, 5329, 5670, 5760, 5767, 6048, 6059, 6241, 6480, 6497, 6557, 6720, 7200
Offset: 1

Views

Author

DarĂ­o Clavijo, Jun 12 2024

Keywords

Comments

These conditions for k are inspired by the Pollard-Strassen factorization algorithm.
f(i*c) is the product of successive blocks of consecutive integers c*i+1 to c*(i+1) inclusive and can be calculated efficiently mod k by a multi-point polynomial evaluation.
The conditions here are that no g by itself reveals a factor of k (so that the Pollard-Strassen algorithm must examine individual c*i+j terms in some g = k block to find a factor).

Examples

			For k = 49:
 i | c |  c*i+1 | c*(i+1) | g
-------------------------------------
 1 | 2 | 3      | 4       | 1
 2 | 2 | 5      | 6       | 1
Result: 1
For k = 323:
 i | c | c*i+1 | c*(i+1) | g
-------------------------------------
 1 | 4 | 5     | 8       | 1
 2 | 4 | 9     | 12      | 1
 3 | 4 | 13    | 16      | 1
 4 | 4 | 17    | 20      | 323
Result: 323
		

Crossrefs

Programs

  • PARI
    s(n) = my(c=sqrtnint(n, 4), vf = vector(c, k, 1)); for (i=1, #vf, vf[i] = prod(j=c*i+1, c*(i+1), j % n); vf[i] = gcd(vf[i], n);); vf;
    isok(n) = if ((n>1) && !isprime(n), my(x=Set(s(n)), y=Set([1,n])); setunion(x, y) == y); \\ Michel Marcus, Jun 18 2024
  • Python
    from sympy import integer_nthroot, gcd, isprime
    def s(k):
      c = integer_nthroot(k, 4)[0]
      f = [1]*c
      for i in range(1, c+1):
        for j in range(c*i+1, c*(i+1)+1):
          f[i-1] = (f[i-1] * j) % k
        f[i-1] = gcd(f[i-1], k)
      return f
    isok = lambda k: not isprime(k) and not any(k > x > 1 for x in s(k))
    print([k for k in range(4, 7200) if isok(k)])
    
  • Python
    from itertools import count, islice
    from math import gcd, prod
    from sympy import isprime
    def A373652_gen(): # generator of terms
        for c in count(1):
            g = [prod(i*c+j for j in range(1,c+1)) for i in range(1,c+1)]
            yield from filter(lambda k: not (k==1 or isprime(k) or any(1A373652_list = list(islice(A373652_gen(),20)) # Chai Wah Wu, Jul 16 2024
    
Showing 1-7 of 7 results.