cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178676 a(n) = 5^n + 5.

Original entry on oeis.org

6, 10, 30, 130, 630, 3130, 15630, 78130, 390630, 1953130, 9765630, 48828130, 244140630, 1220703130, 6103515630, 30517578130, 152587890630, 762939453130, 3814697265630, 19073486328130, 95367431640630, 476837158203130, 2384185791015630, 11920928955078130
Offset: 0

Views

Author

Vincenzo Librandi, Dec 25 2010

Keywords

Examples

			G.f. = 6 + 10*x + 30*x^2 + 130*x^3 + 630*x^4 + 3130*x^5 + 15630*x^6 + ... - _Michael Somos_, Jan 28 2019
		

Crossrefs

Programs

Formula

a(n) = 5*(a(n-1) - 4) with a(0) = 6.
G.f.: (6-26*x)/((1-5*x)*(1-x)). - R. J. Mathar, Jan 05 2011
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1. - Vincenzo Librandi, Sep 30 2013
E.g.f.: exp(5*x) + 5*exp(x). - G. C. Greubel, Jan 27 2019
a(n) = A000351(n)+5 = A034474(n)+4 = A242328(n)+3 = A242329(n)+1. - Elmo R. Oliveira, Dec 06 2023

A308394 Numbers which can be written in the form m^k - m with m prime and k a positive integer.

Original entry on oeis.org

0, 2, 6, 14, 20, 24, 30, 42, 62, 78, 110, 120, 126, 156, 240, 254, 272, 336, 342, 506, 510, 620, 726, 812, 930, 1022, 1320, 1332, 1640, 1806, 2046, 2162, 2184, 2394, 2756, 3120, 3422, 3660, 4094, 4422, 4896, 4970, 5256, 6162, 6558, 6806, 6840, 7832, 8190, 9312
Offset: 1

Views

Author

Craig J. Beisel, May 24 2019

Keywords

Comments

The only known terms which have two representations where m is prime are 6 and 2184. It is conjectured by Bennett these are the only terms with this property.

Examples

			a(9) = 2^6 - 2 = 62.
For the two terms known to have two representations we have a(3) = 6 = 2^3 - 2 = 3^2 - 3 and a(33)= 2184 = 3^7 - 3 = 13^3 - 13.
		

Crossrefs

Subsequences: A000918 (2^n - 2), A036689 (p^2 - p), A058809 (3^n - 3), A178671 (5^n - 5).

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    P:= select(isprime,[2,seq(i,i=3..floor((1+sqrt(1+4*N))/2),2)]):
    S:= {0,seq(seq(m^k-m,k=2..floor(log[m](N+m))),m=P)}:
    sort(convert(S,list)); # Robert Israel, Aug 11 2019
  • PARI
    x=List([]); lim=10000; forprime(m=2, lim, for(k=1, 100, y=(m^k-m); if(y>lim, break, i=setsearch(x, y, 1); if(i>0, listinsert(x, y, i))))); for(i=1, #x, print(x[i]));
    
  • PARI
    isok(n) = {forprime(p=2, oo, my(keepk = 0); for (k=1, oo, if ((x=p^k - p) == n, return(1)); if (x > n, keepk = k; break);); if (keepk == 2, break););} \\ Michel Marcus, Aug 06 2019
Showing 1-2 of 2 results.