cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A242328 a(n) = 5^n + 2.

Original entry on oeis.org

3, 7, 27, 127, 627, 3127, 15627, 78127, 390627, 1953127, 9765627, 48828127, 244140627, 1220703127, 6103515627, 30517578127, 152587890627, 762939453127, 3814697265627, 19073486328127, 95367431640627, 476837158203127, 2384185791015627, 11920928955078127
Offset: 0

Views

Author

Vincenzo Librandi, May 13 2014

Keywords

Crossrefs

Programs

  • Magma
    [5^n+2: n in [0..30]];
  • Mathematica
    Table[5^n + 2, {n, 0, 30}] (* or *) CoefficientList[Series[(3 - 11 x)/((1 - x) (1 - 5 x)), {x, 0, 30}], x]
    LinearRecurrence[{6,-5},{3,7},30] (* Harvey P. Dale, Jun 30 2022 *)

Formula

G.f.: (3-11*x)/((1-x)*(1-5*x)).
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1.
From Elmo R. Oliveira, Dec 04 2023: (Start)
a(n) = A000351(n) + 2.
a(n) = 5*a(n-1) - 8 with a(0) = 3.
E.g.f.: exp(5*x) + 2*exp(x). (End)

A242329 a(n) = 5^n + 4.

Original entry on oeis.org

5, 9, 29, 129, 629, 3129, 15629, 78129, 390629, 1953129, 9765629, 48828129, 244140629, 1220703129, 6103515629, 30517578129, 152587890629, 762939453129, 3814697265629, 19073486328129, 95367431640629, 476837158203129, 2384185791015629, 11920928955078129
Offset: 0

Views

Author

Vincenzo Librandi, May 13 2014

Keywords

Comments

Subsequence of A226810. - Bruno Berselli, May 13 2014

Crossrefs

Cf. A000351, A003463, A034474, A132079, A178676, A226810, A242328, A253208 (similar sequence).

Programs

  • Magma
    [5^n+4: n in [0..30]];
  • Mathematica
    Table[5^n + 4, {n, 0, 30}]
    LinearRecurrence[{6,-5},{5,9},30] (* Harvey P. Dale, Mar 15 2025 *)

Formula

G.f.: (5-21*x)/((1-x)*(1-5*x)).
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1.
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = A000351(n)+4 = A034474(n)+3 = A242328(n)+2.
a(n) = 5*a(n-1) - 16 with a(0) = 5.
E.g.f.: exp(5*x) + 4*exp(x). (End)

A178671 a(n) = 5^n - 5.

Original entry on oeis.org

-4, 0, 20, 120, 620, 3120, 15620, 78120, 390620, 1953120, 9765620, 48828120, 244140620, 1220703120, 6103515620, 30517578120, 152587890620, 762939453120, 3814697265620, 19073486328120, 95367431640620, 476837158203120, 2384185791015620, 11920928955078120
Offset: 0

Views

Author

Vincenzo Librandi, Dec 25 2010

Keywords

Examples

			a(n) = A178676(n)-10 = A242329(n)-9 = A242328(n)-7 = A034474(n)-6 = A000351(n)-5. - _Elmo R. Oliveira_, Dec 06 2023
		

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 20 with a(0) = -4.
From R. J. Mathar, Jan 03 2011: (Start)
G.f.: 4*(-1+6*x)/((1-5*x)*(1-x)).
a(n) = 4*A104891(n-1), n > 0. (End)
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1. - Vincenzo Librandi, Jan 25 2013
E.g.f.: exp(5*x) - 5*exp(x). - G. C. Greubel, Jan 28 2019

A178675 a(n) = 4^n + 4.

Original entry on oeis.org

5, 8, 20, 68, 260, 1028, 4100, 16388, 65540, 262148, 1048580, 4194308, 16777220, 67108868, 268435460, 1073741828, 4294967300, 17179869188, 68719476740, 274877906948, 1099511627780, 4398046511108, 17592186044420, 70368744177668, 281474976710660, 1125899906842628
Offset: 0

Views

Author

Vincenzo Librandi, Dec 25 2010

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n -> 4^n + 4); # G. C. Greubel, Jan 27 2019
  • Magma
    [4^n+4: n in [0..35]];
    
  • Magma
    I:=[5, 8]; [n le 2 select I[n] else 5*Self(n-1)-4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 18 2013
    
  • Mathematica
    Table[4^n +4, {n, 0, 40}] (* or *) CoefficientList[Series[(5-17x)/((4x - 1)(x-1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 18 2013 *)
    LinearRecurrence[{5,-4},{5,8},30] (* Harvey P. Dale, Sep 12 2023 *)
  • PARI
    vector(40, n, n--; 4^n+4) \\ G. C. Greubel, Jan 27 2019
    
  • Sage
    [4^n+4 for n in range(40)] # G. C. Greubel, Jan 27 2019
    

Formula

a(n) = 4*(a(n-1) - 3) with n > 0, a(0)=5.
G.f.: ( 5-17*x ) / ( (1-4*x)*(1-x) ). - R. J. Mathar, Jan 05 2011
a(n) = 5*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Jun 18 2013
E.g.f.: exp(4*x) + 4*exp(x). - G. C. Greubel, Jan 27 2019

A384853 Squared length of interior diagonal of n-th (U, V)-crossbox, where U = (1, 0, 1) and V = (0, 1, 0), as in Comments.

Original entry on oeis.org

1, 5, 9, 21, 57, 165, 489, 1461, 4377, 13125, 39369, 118101, 354297, 1062885, 3188649, 9565941, 28697817, 86093445, 258280329, 774840981, 2324522937, 6973568805, 20920706409, 62762119221, 188286357657, 564859072965, 1694577218889, 5083731656661
Offset: 1

Views

Author

Clark Kimberling, Jul 02 2025

Keywords

Comments

Suppose that U and V are 3-dimensional vectors over the field of real numbers. Define f(1) = U, f(2) = V, f(3) = UxV, where x = cross product, and for n>=2, define f(n) = h(n - 1), g(n) = f(n - 1) + g(n - 1) - h(n - 1), h(n) = f(n) x g(n).
The parallelopiped having edge vectors f(n), g(n), h(n) is the n-th (U,V)-crossbox, with volume |f(n).(g(n) x h(n))|, where . = dot product, and interior diagonal length ||g(n)||. These two sequences, after removal of their first 2 terms, are given for selected U and V by the following table, except for the 3 initial terms:
U V volume squared diagonal length, ||g(n)||^2
(1, 0, 0) (0, 1, 0) A000079 A052548
(1, 0, 0) (0, 1, 1) A008776 3*A052919
(1, 0, 0) (1, 0, 1) A000351 A178676
(1, 0, 0) (1, 1, 1) A167747 5*A204061
(1, 0, 0) (0, 2, 0) A005054 4*A199215
(1, 0, 0) (1, 2, 0) A013731 8*A199552
(1, 0, 0) (2, 1, 0) A011557 10*A000533
(1, 0, 0) (1, 1, 2) A067403 18*A135423
(1, 0, 0) (2, 1, 1) A334603 11*A199750
(1, 0, 1) (0, 1, 0) A008776 this sequence
(1, 1, 0) (0, 1, 1) A081341 6*A199318
(1, 1, 0) (1, 1, 1) A270369 9*A199559
(1, 2, 3) (3, 2, 1) 2*A009992 48 + 96*A009992

Examples

			Taking U = (1, 0, 1) and V = (0, 1, 0), successive edge vectors are given by
(f(n)) = ( (1, 0, 1), (-1,0,1), (-1,2,-1), (3,0,-3), (3,-6,3), ...)
(g(n)) = ( (0,1,0), (2,1,0), (2,-1,2), (-2,1,4), (-2,7,-2), (10,1,-8), ...)
(h(n)) = ( (-1.0,1), (-1,2,-1), (3,0,-3), (3,-6,3), (-9,0,9),...)
The successive volumes are (2, 6, 18, 54, 162, 486, 1458, 4374, 13122,...).
The lengths of diagonals of the first five crossboxes are 1, sqrt(5), 3, sqrt(21), sqrt(57), so the first five squared lengths are 1, 5, 9, 21, 57.
		

Crossrefs

Programs

  • Mathematica
    f[1] = {1, 0, 1}; g[1] = {0, 1, 0}; h[1] = Cross[f[1], g[1]];
    f[n_] := f[n] = h[n - 1];
    g[n_] := g[n] = f[n - 1] + g[n - 1] - h[n - 1];
    h[n_] := h[n] = Cross[f[n], g[n]];
    v[n_] := f[n] . Cross[g[n], h[n]] (* signed volume of nth parallelopiped P(n) *)
    d[n_] := Norm[g[n]] (* length of interior diagonal of P(n) *)
    Column[Table[{f[n], g[n], h[n]}, {n, 1, 16}]]  (* edge vectors of P(n) *)
    Table[v[n], {n, 1, 16}]  (* A008776 *)
    u = Table[d[n]^2, {n, 1, 30}] (* A384853 *)
    Join[{1},Table[1+2*(3^(n-1)+1),{n,40}]] (* or *) LinearRecurrence[{4,-3},{1,5,9},50] (* Harvey P. Dale, Jul 20 2025 *)

Formula

a(0) = 1, a(n) = 1 + 2 * (3^(n-1)+1) for n>=1.
a(n) = 4*a(n-1) - 3*a(n-2) for n>=4.
In general, suppose that U = (a,b,c) and V = (s,t,u), and let D = -(a^2 + b^2 + c^2 + s^2 + t^2 + u^2 + 2 (a s + b t + c u)). Then, linear recurrences are given for n>=3 by f(n) = D*f (n - 2), g(n) = g(n - 1) + D*g(n - 2) - D*g(n - 3), h(n) = D*h(n - 2). If w(n) denotes the volume of the n-th (U,V)-crossbox, then w(n) = D*w(n-1) for n>=2.
Showing 1-5 of 5 results.