A178693
Numerators of coefficients of Maclaurin series for 2 - sqrt(1 - x - x^2).
Original entry on oeis.org
1, 1, 5, 5, 45, 95, 465, 1165, 24445, 65595, 359915, 1003315, 11342185, 32415435, 187063145, 544172445, 25508284445, 75196195795, 445774614215, 1327748661015, 15887874844835, 47715177777185, 287618252461095, 869652752181595
Offset: 0
The Maclaurin series begins with 1 + (1/2)*x + (5/8)*x^2 + (5/16)*x^3 + ....
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 41.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 2-Sqrt(1-x-x^2) )); [Numerator(Factorial(n-1)*b[n]): n in [1..m]]; // G. C. Greubel, Jan 25 2019
-
Numerator[CoefficientList[Series[2-Sqrt[1-x-x^2], {x, 0, 30}], x]] (* G. C. Greubel, Jan 25 2019 *)
-
my(x='x+O('x^30)); v=Vec( 2-sqrt(1-x-x^2) ); vector(#v, n, numerator(v[n])) \\ G. C. Greubel, Jan 25 2019
A179191
Expansion of o.g.f. (1/2)*(-1 + 1/sqrt(1 - 4*x - 4*x^2)).
Original entry on oeis.org
0, 1, 4, 16, 68, 296, 1312, 5888, 26672, 121696, 558464, 2574848, 11917952, 55345408, 257741824, 1203224576, 5629027072, 26383656448, 123868321792, 582414688256, 2742116907008, 12926036258816, 60998951747584, 288147689046016, 1362407763795968, 6447125560016896
Offset: 0
G.f. = x + 4*x^2 + 16*x^3 + 68*x^4 + 296*x^5 + 1312*x^6 + 5888*x^7 + ....
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (-1 + 1/Sqrt(1-4*x-4*x^2))/2 )); // G. C. Greubel, Jan 25 2019
-
CoefficientList[1/2 (-1 + (1-4x-4x^2)^(-1/2)) + O[x]^23, x] (* Jean-François Alcover, Jul 27 2018 *)
-
a(n):=sum(m*sum(sum(binomial(i-1,k-1)*binomial(i,n-i),i,k,n)*sum(binomial(j,2*j-m-k)*binomial(k,j),j,0,k)/k,k,m,n),m,1,n); /* Vladimir Kruchinin, Mar 11 2011 */
a(n):=sum(2^(n-k-1)*binomial(n,k)*binomial(n-k,k),k,0,n); /* Vladimir Kruchinin, Mar 12 2015 */
-
my(x='x+O('x^30)); concat([0], Vec((-1 +1/sqrt(1-4*x-4*x^2))/2)) \\ G. C. Greubel, Jan 25 2019
-
((-1 + 1/sqrt(1-4*x-4*x^2))/2).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 25 2019
A179190
Coefficient [x^n] of the Maclaurin series for 2 - sqrt(1 - 4*x - 4*x^2).
Original entry on oeis.org
1, 2, 4, 8, 24, 80, 288, 1088, 4256, 17088, 70016, 291584, 1230592, 5251584, 22623232, 98248704, 429677056, 1890700288, 8364824576, 37186449408, 166030266368, 744180244480, 3347321831424, 15104525959168, 68357598756864
Offset: 0
The Maclaurin series is 1 + 2*x + 4*x^2 + 8*x^3 + 24*x^4 + ...
-
A179190 := proc(n) if n = 0 then 1; else add( doublefactorial(2*n-2*k-3) *2^(n-k) / k! / (n-2*k)!, k=0..floor(n/2)) ; end if; end proc: # R. J. Mathar, Jul 11 2011
-
Table[SeriesCoefficient[Series[2-Sqrt[1-4*t-4*t^2], {t,0,n}], n], {n, 0, 30}] (* G. C. Greubel, Jan 25 2019 *)
-
makelist(coeff(taylor(2-sqrt(1-4*x-4*x^2), x, 0, n), x, n), n, 0, 24); /* Bruno Berselli, Jul 04 2011 */
Showing 1-3 of 3 results.
Comments