cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071356 Expansion of (1 - 2*x - sqrt(1 - 4*x - 4*x^2))/(4*x^2).

Original entry on oeis.org

1, 2, 6, 20, 72, 272, 1064, 4272, 17504, 72896, 307648, 1312896, 5655808, 24562176, 107419264, 472675072, 2091206144, 9296612352, 41507566592, 186045061120, 836830457856, 3776131489792, 17089399689216, 77548125675520, 352766964908032
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

Comments

Number of underdiagonal lattice paths from (0,0) to the line x=n, using only steps R=(1,0), V=(0,1) and D=(1,2). Also number of Motzkin paths of length n in which both the "up" and the "level" steps come in two colors. E.g., a(2)=6 because we have RR, RVR, RRV, RD, RVRV and RRVV. - Emeric Deutsch, Dec 21 2003
Inverse binomial transform of little Schroeder numbers 1,3,11,... (A001003 with first term deleted). - David Callan, Feb 07 2004
a(n) is the number of planar trees satisfying: 1) Every internal node has at least two children, 2) Among the children of a node, only the leftmost and the rightmost children can be leaves, 3) The tree has n+1 leaves. For instance, a(3)=6. - Marcelo Aguiar (maguiar(AT)math.tamu.edu), Oct 14 2005
Hankel transform is A006125(n+1)=2^C(n+1,2). - Paul Barry, Jan 08 2008
Equals binomial transform of A025235: (1, 1, 3, 7, 21, 61, 191, ...). - Gary W. Adamson, Sep 03 2010
Conjecturally, the number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) > e(j) <= e(k). [Martinez and Savage, 2.19] - Eric M. Schmidt, Jul 17 2017
Let s denote West's stack-sorting map, and let Av_n(tau_1, ..., tau_r) denote the set of permutations of [n] that avoid the patterns tau_1, ..., tau_r. It is conjectured that a(n) = |s^{-1}(Av_{n+1}(132, 231))| = |s^{-1}(Av_{n+1}(132, 312))| = |s^{-1}(Av_{n+1}(231, 312))|. Only the last of these equalities is known. - Colin Defant, Sep 16 2018

Examples

			a(3) = 20 = sum of top row terms in M^3 = (9 + 7 + 3 + 1).
		

Crossrefs

A036774(n) = a(n-1) * n! / 2^(n-1).
Row sums of A071943.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1 - 2*x - Sqrt(1 - 4*x - 4*x^2))/(4*x^2))); // Vincenzo Librandi, Jan 21 2020
  • Mathematica
    CoefficientList[Series[(1-2*x-Sqrt[1-4*x-4*x^2])/(4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 24 2013 *)
    a[n_] := 2^n Hypergeometric2F1[(1-n)/2, -n/2, 2, 2];
    Table[a[n], {n, 0, 24}] (* Peter Luschny, May 30 2021 *)
  • PARI
    a(n)=if(n<0,0,n++; polcoeff(serreverse(x/(1+2*x+2*x^2)+x*O(x^n)),n))
    
  • PARI
    {a(n)= if(n<1, n==0, polcoeff( 2/(1 -2*x +sqrt(1 -4*x -4*x^2 +x*O(x^n))), n))}
    
  • PARI
    {a(n)= local(A); if(n<0, 0, A= x*O(x^n); n!*simplify(polcoeff( exp(2*x +A)* besseli(1, 2*x* quadgen(8) +A), n)))} /* Michael Somos, Mar 31 2007 */
    
  • Sage
    def A071356_list(n):  # n>=1
        T = [0]*(n+1); R = [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a + 2*(b + c)
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u)
        return R
    A071356_list(25)  # Peter Luschny, Nov 01 2012
    

Formula

G.f. A(x) satisfies 2x^2*A(x)^2+(2x-1)*A(x)+1=0 and A(x)=1/(1-2x-2x^2/A(x)). - Michael Somos, Sep 06 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)C(k)2^(n-2k)*2^k. - Paul Barry, May 18 2005
G.f.: (1 - 2*x - sqrt(1 - 4*x - 4*x^2) )/(4*x^2) = 2/(1 - 2*x +sqrt(1 - 4*x - 4*x^2)).
Moment representation is a(n) = (1/(4*Pi))*int(x^n*sqrt(4-4x-x^2), x, -2*sqrt(2)-2, 2*sqrt(2)-2). - Paul Barry, Jan 08 2008
G.f.: 1/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-2x^2/.... (continued fraction). - Paul Barry, Dec 06 2008
From Gary W. Adamson, Jul 22 2011: (Start)
a(n) = sum of top row terms of M^n, M = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, ...
2, 2, 1, 1, 0, 0, ...
2, 2, 2, 1, 1, 0, ...
2, 2, 2, 2, 1, 1, ...
2, 2, 2, 2, 2, 1, ... (End)
E.g.f.: a(n) = n!* [x^n] exp(2*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Peter Luschny, Aug 25 2012
D-finite with recurrence: (n+2)*a(n) +2*(-2*n-1)*a(n-1) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Dec 02 2012 (Formula verified and used for computations. - Fung Lam, Feb 24 2014)
a(n) ~ 2^(n - 1/4) * (1+sqrt(2))^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 24 2013, simplified Jan 26 2019
a(n) = A179190(n+2)/4. - R. J. Mathar, Jan 20 2020
a(n) = 2^n * hypergeom((1 - n)/2, -n/2, 2, 2). - Peter Luschny, May 30 2021
a(n) = (-2*î)^(n+2) * (Legendre_P(n+2, i) - Legendre_P(n, i))/(4*(2*n + 3)). - Peter Bala, May 06 2024
From Emanuele Munarini, Jun 13 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k)*2^(n-k)/(k+1).
a(n) = Sum_{k=0..floor((n+2)/3)} binomial(n-2k+2, 2k)*Catalan(n-2k+1).
a(n) = Sum_{k=0..floor((n+2)/4)} binomial(n-2k+1, 2k+1)*Catalan(n-2k). (End)

A179191 Expansion of o.g.f. (1/2)*(-1 + 1/sqrt(1 - 4*x - 4*x^2)).

Original entry on oeis.org

0, 1, 4, 16, 68, 296, 1312, 5888, 26672, 121696, 558464, 2574848, 11917952, 55345408, 257741824, 1203224576, 5629027072, 26383656448, 123868321792, 582414688256, 2742116907008, 12926036258816, 60998951747584, 288147689046016, 1362407763795968, 6447125560016896
Offset: 0

Views

Author

Clark Kimberling, Jul 01 2010

Keywords

Comments

G.f. A(x) satisfies A(x)^2 + A(x) = (x^2 + x)/(1 - 4*x - 4*x^2). - Michael Somos, Jan 28 2019

Examples

			G.f. = x + 4*x^2 + 16*x^3 + 68*x^4 + 296*x^5 + 1312*x^6 + 5888*x^7 + ....
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (-1 + 1/Sqrt(1-4*x-4*x^2))/2 )); // G. C. Greubel, Jan 25 2019
    
  • Mathematica
    CoefficientList[1/2 (-1 + (1-4x-4x^2)^(-1/2)) + O[x]^23, x] (* Jean-François Alcover, Jul 27 2018 *)
  • Maxima
    a(n):=sum(m*sum(sum(binomial(i-1,k-1)*binomial(i,n-i),i,k,n)*sum(binomial(j,2*j-m-k)*binomial(k,j),j,0,k)/k,k,m,n),m,1,n); /* Vladimir Kruchinin, Mar 11 2011 */
    a(n):=sum(2^(n-k-1)*binomial(n,k)*binomial(n-k,k),k,0,n); /* Vladimir Kruchinin, Mar 12 2015 */
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec((-1 +1/sqrt(1-4*x-4*x^2))/2)) \\ G. C. Greubel, Jan 25 2019
    
  • Sage
    ((-1 + 1/sqrt(1-4*x-4*x^2))/2).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 25 2019

Formula

G.f.: (1/2)*(-1 + 1/sqrt(1 - 4*x - 4*x^2)).
G.f.: A(x) = x*A001006(A000045(x)/x-1)/(1-x*A001006(A000045(x)/x-1)).
a(n) = Sum_{m=1..n} m*Sum_{k=m..n} (Sum_{i=k..n} binomial(i-1,k-1)*binomial(i,n-i))*(Sum_{j=0..k} binomial(j,2*j-m-k)*binomial(k,j))/k. - Vladimir Kruchinin, Mar 11 2011
a(n) = Sum_{k=0..n} 2^(n-k-1)*binomial(n,k)*binomial(n-k,k). - Vladimir Kruchinin, Mar 12 2015
From Vaclav Kotesovec, Jan 26 2019: (Start)
D-finite with recurrence: n*a(n) = 2*(2*n - 1)*a(n-1) + 4*(n-1)*a(n-2).
a(n) ~ 2^(n - 7/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). (End)
0 = a(n)*(16*a(n+1) +24*a(n+2) -8*a(n+3)) + a(n+1)*(+8*a(n+1) +16*a(n+2) -6*a(n+3)) + a(n+2)*(-2*a(n+2) +a(n+3)) for all n in Z except n=-1. - Michael Somos, Jan 27 2019
a(n) = A006139(n)/2, n>0. - R. J. Mathar, Jan 24 2020
Showing 1-2 of 2 results.