A178821 Triangle read by rows: T(n,k) = binomial(n+4,4) * binomial(n,k), 0 <= k <= n.
1, 5, 5, 15, 30, 15, 35, 105, 105, 35, 70, 280, 420, 280, 70, 126, 630, 1260, 1260, 630, 126, 210, 1260, 3150, 4200, 3150, 1260, 210, 330, 2310, 6930, 11550, 11550, 6930, 2310, 330, 495, 3960, 13860, 27720, 34650, 27720, 13860, 3960, 495, 715, 6435, 25740, 60060, 90090, 90090, 60060, 25740, 6435, 715
Offset: 0
Examples
Triangle begins: 1; 5, 5; 15, 30, 15; 35, 105, 105, 35; 70, 280, 420, 280, 70;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- H. J. Brothers, Pascal's prism, The Mathematical Gazette, 96 (July 2012), 213-220.
- H. J. Brothers, Pascal's Prism: Supplementary Material
Crossrefs
Programs
-
GAP
T:=Flat(List([0..10], n-> List([0..n], k-> Binomial(n+4, 4)* Binomial(n, k) ))); # G. C. Greubel, Jan 22 2019
-
Magma
/* As triangle */ [[Binomial(n+4,4)*Binomial(n,k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Oct 23 2017
-
Maple
T:=(n,k)->binomial(n+4,4)*binomial(n,k): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Jan 22 2019
-
Mathematica
Table[Multinomial[4, i-j, j], {i, 0, 9}, {j, 0, i}]//Column
-
PARI
{T(n,k) = binomial(n+4, 4)*binomial(n, k)}; \\ G. C. Greubel, Jan 22 2019
-
Sage
[[binomial(n+4, 4)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 22 2019
Formula
T(n,k) = C(n+4,4) * C(n,k), 0 <= k <= n.
For element a in A178819: a_(5, i, j) = (i+3; 4, i-j, j-1), i >= 1, 1 <= j <= i.
G.f.: 1/(1 - x - x*y)^5. - Ilya Gutkovskiy, Mar 20 2020
Comments