A179070 a(1)=a(2)=a(3)=1, a(4)=3; thereafter a(n) = a(n-1) + a(n-3).
1, 1, 1, 3, 4, 5, 8, 12, 17, 25, 37, 54, 79, 116, 170, 249, 365, 535, 784, 1149, 1684, 2468, 3617, 5301, 7769, 11386, 16687, 24456, 35842, 52529, 76985, 112827, 165356, 242341, 355168, 520524, 762865, 1118033, 1638557, 2401422, 3519455, 5158012, 7559434
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Programs
-
Haskell
a179070 n = a179070_list !! (n-1) a179070_list = 1 : zs where zs = 1 : 1 : 3 : zipWith (+) zs (drop 2 zs) -- Reinhard Zumkeller, Jul 23 2012
-
Mathematica
Join[{1}, LinearRecurrence[{1, 0, 1}, {1, 1, 3}, 80]] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
-
PARI
a(n)=([0,1,0; 0,0,1; 1,0,1]^(n-1)*[1;1;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
Formula
G.f.: x - x^2*(1+2*x^2) / ( -1+x+x^3 ). - R. J. Mathar, Oct 30 2011
Extensions
Simpler definition from N. J. A. Sloane, Aug 29 2013
Comments