cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179095 Rectified 5-cell numbers: the coefficient of x^{2n-2} in (1+x+x^2+ ... + x^{n-1})^5.

Original entry on oeis.org

0, 1, 10, 45, 135, 320, 651, 1190, 2010, 3195, 4840, 7051, 9945, 13650, 18305, 24060, 31076, 39525, 49590, 61465, 75355, 91476, 110055, 131330, 155550, 182975, 213876, 248535, 287245, 330310, 378045, 430776, 488840, 552585, 622370, 698565, 781551, 871720, 969475
Offset: 0

Views

Author

Michael A. Jackson, Jun 29 2010

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := CoefficientList[ Series[ Sum[x^k, {k, 0, n - 1}]^5, {x, 0, 2 n + 3}], x][[2 n - 1]]; Array[f, 36] (* Robert G. Wilson v, Jul 30 2010 *)
  • PARI
    a(n) = polcoeff(((x^n-1)/(x-1))^5, 2*n-2); \\ Michel Marcus, Feb 17 2016
    
  • PARI
    A179095(n)=n*(11*n^3+6*n^2+n+6)\24 \\ M. F. Hasler, Feb 19 2016

Formula

Conjectures: a(n) = n*(11*n^3+6*n^2+n+6)/24. G.f.: x*(1+5*x+5*x^2)/(1-x)^5. - Colin Barker, Jan 09 2012
Comment from Doron Zeilberger, Feb 18 2016 (Start):
The conjectures in A179095-A179099 are true. Proof:
The geometric series 1+x+x^2+..+x^(n-1) = (1-x^n)/(1-x).
Hence for a fixed k (in the above cases k=5..9, but the argument holds in general)
the coefficient of x^(2*n-2) in (1+x+...+x^(n-1))^k =
coefficient of x^(2*n-2) in (1-x^n)^k*(1-x)^(-k) =
coefficient of x^(2*n-2) in (1-k*x^n + Sum of powers higher than x^(2*n-2)..)
= coefficient of x^(2*n-2) in (1-x)^(-k) -k*(the coefficient of x^(n-2) in (1-x)^(-k))
= (-1)^(2*n-2)*binomial(-k,2*n-2)- k* (-1)^(n-2)*binomial(-k,n-2)=
Using (-1)^m *binomial(-m,k)= binomial(m+k-1,k-1) this is
binomial(k+2*n-3,k-1) - k *binomial(k+n-3,k-1)
and this agrees with the conjectures for k=5..9 (End)
E.g.f.: exp(x)*x*(24 + 96*x + 72*x^2 + 11*x^3)/24. - Stefano Spezia, Mar 28 2023

Extensions

More terms from Robert G. Wilson v, Jul 30 2010