cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179269 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are increasing, and first difference > first part.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 10, 10, 10, 13, 14, 14, 18, 19, 19, 23, 25, 25, 30, 32, 33, 38, 41, 42, 48, 52, 54, 60, 65, 67, 75, 81, 84, 92, 99, 103, 113, 121, 126, 136, 147, 153, 165, 177, 184, 197, 213, 221, 236, 253, 264, 280, 301, 313, 331, 355, 371, 390, 418, 435, 458
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Conditions as in A179254; additionally, if more than 1 part, first difference > first part.
Equivalently, number of partitions for which the sequence of part counts by decreasing part size is 1, 2, 3, ... - Olivier Gérard, Jul 28 2017

Examples

			a(10) = 5 as there are 5 such partitions of 10: 1 + 3 + 6 = 1 + 9 = 2 + 8 = 3 + 7 = 10.
a(10) = 5 as there are 5 such partitions of 10: 10, 8 + 1 + 1, 6 + 2 + 2, 4 + 3 + 3, 3 + 2 + 2 + 1 + 1 + 1 (second definition).
From _Gus Wiseman_, May 04 2019: (Start)
The a(3) = 1 through a(13) = 7 partitions whose differences are strictly increasing (with the last part taken to be 0) are the following (A = 10, B = 11, C = 12, D = 13). The Heinz numbers of these partitions are given by A325460.
  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)    (B)    (C)    (D)
       (31)  (41)  (51)  (52)  (62)  (72)  (73)   (83)   (93)   (94)
                         (61)  (71)  (81)  (82)   (92)   (A2)   (A3)
                                           (91)   (A1)   (B1)   (B2)
                                           (631)  (731)  (831)  (C1)
                                                                (841)
                                                                (931)
The a(3) = 1 through a(11) = 5 partitions whose multiplicities form an initial interval of positive integers are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A307895.
  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (A)       (B)
       (211)  (311)  (411)  (322)  (422)  (522)  (433)     (533)
                            (511)  (611)  (711)  (622)     (722)
                                                 (811)     (911)
                                                 (322111)  (422111)
(End)
		

Crossrefs

Cf. A179254 (condition only on differences), A007294 (nondecreasing instead of strictly increasing), A179255, A320382, A320385, A320387, A320388.

Programs

  • Mathematica
    Table[Length@
      Select[IntegerPartitions[n],
       And @@ Equal[Range[Length[Split[#]]], Length /@ Split[#]] &], {n,
    0, 40}]   (* Olivier Gérard, Jul 28 2017 *)
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • PARI
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, L[w-1][i-k*t]))); Mat(L)}
    seq(n)={my(M=R(n)); concat([1], vector(n, i, vecsum(M[i,])))} \\ Andrew Howroyd, Aug 27 2019
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A179269(n)
      (0..n).map{|i| f(i)}
    end
    p A179269(50) # Seiichi Manyama, Oct 12 2018
    
  • Sage
    def A179269(n):
        has_increasing_diffs = lambda x: min(differences(x,2)) >= 1
        special = lambda x: (x[1]-x[0]) > x[0]
        allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_increasing_diffs(x))
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011
    

Formula

G.f.: Sum_{k>=0} x^(k*(k+1)*(k+2)/6) / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 25 2019