cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A179290 Decimal expansion of length of edge of a regular icosahedron with radius of circumscribed sphere = 1.

Original entry on oeis.org

1, 0, 5, 1, 4, 6, 2, 2, 2, 4, 2, 3, 8, 2, 6, 7, 2, 1, 2, 0, 5, 1, 3, 3, 8, 1, 6, 9, 6, 9, 5, 7, 5, 3, 2, 1, 4, 5, 7, 0, 9, 9, 5, 8, 6, 4, 4, 8, 6, 6, 8, 3, 5, 6, 3, 0, 5, 7, 8, 7, 1, 0, 4, 6, 4, 8, 2, 4, 2, 2, 2, 9, 2, 8, 0, 6, 4, 2, 8, 0, 3, 6, 7, 4, 3, 2, 6, 5, 2, 5, 7, 6, 6, 3, 1, 0, 5, 1, 4, 1, 9, 1, 3, 3, 9
Offset: 1

Views

Author

Keywords

Comments

Regular icosahedron: A three-dimensional figure with 20 congruent equilateral triangle faces, 12 vertices, and 30 edges.
Shorter diagonal of golden rhombus with unit edge length. - Eric W. Weisstein, Dec 11 2018
The length of the shorter side of a golden rectangle inscribed in a unit circle. - Michal Paulovic, Sep 01 2022
The side length of a square inscribed within a golden ellipse with a unit semi-major axis. - Amiram Eldar, Oct 02 2022
(10/3)*(this constant)=3.504874080794224... is the volume of the polyhedron with 32 edges with conjectured maximum volume inscribed in a sphere of radius 1. It has 60 congruent triangular faces and the symmetry group of the regular icosahedron. See Pfoertner links for visualizations. - Hugo Pfoertner, Aug 02 2025

Examples

			1.051462224238267212051338169695753214570995864486683563057871046482422...
		

Crossrefs

Cf. A179290 (longer golden rhombus diagonal).

Programs

  • Maple
    evalf[120](csc(2*Pi/5)); # Muniru A Asiru, Dec 11 2018
  • Mathematica
    RealDigits[Csc[2 Pi/5], 10, 110][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
  • PARI
    sqrt(50-10*sqrt(5))/5 \\ Charles R Greathouse IV, Jan 22 2024
  • Python
    from decimal import *
    getcontext().prec = 110
    c = Decimal.sqrt(2 - 2 / Decimal.sqrt(Decimal(5)))
    print([int(i) for i in str(c) if i != '.'])
    # Karl V. Keller, Jr., Jul 10 2020
    

Formula

Equals sqrt(50-10*sqrt(5))/5.
Equals csc(2*Pi/5). - Eric W. Weisstein, Dec 11 2018
Equals 1/Im(e^(3*i*Pi/5)) = 1/Im(e^(3*i*Pi/5) - 1) = sqrt(2 - 2/sqrt(5)). - Karl V. Keller, Jr., Jun 11 2020
Equals 1/A019881. - R. J. Mathar, Jan 17 2021
From Antonio GraciĆ” Llorente, Mar 15 2024: (Start)
Equals Product_{k >= 1} ((10*k - 1)*(10*k + 1))/((10*k - 2)*(10*k + 2)).
Equals Product_{k >= 1} 1/(1 - 1/(25*(2*k - 1)^2)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
A root of 5*x^4 - 20*x^2 + 16=0 (see A121570). - R. J. Mathar, Aug 29 2025

Extensions

Partially rewritten by Charles R Greathouse IV, Feb 02 2011