A179290 Decimal expansion of length of edge of a regular icosahedron with radius of circumscribed sphere = 1.
1, 0, 5, 1, 4, 6, 2, 2, 2, 4, 2, 3, 8, 2, 6, 7, 2, 1, 2, 0, 5, 1, 3, 3, 8, 1, 6, 9, 6, 9, 5, 7, 5, 3, 2, 1, 4, 5, 7, 0, 9, 9, 5, 8, 6, 4, 4, 8, 6, 6, 8, 3, 5, 6, 3, 0, 5, 7, 8, 7, 1, 0, 4, 6, 4, 8, 2, 4, 2, 2, 2, 9, 2, 8, 0, 6, 4, 2, 8, 0, 3, 6, 7, 4, 3, 2, 6, 5, 2, 5, 7, 6, 6, 3, 1, 0, 5, 1, 4, 1, 9, 1, 3, 3, 9
Offset: 1
Examples
1.051462224238267212051338169695753214570995864486683563057871046482422...
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..1000
- J. Brandts, S. Korotov, M. Krizek, and J. Solc, On nonobtuse simplicial partitions, Siam Rev. 51 (2) (2009) 317-335.
- Dr. Math, Regular Polyhedra: Formulas.
- Hugo Pfoertner, Visualization of the 32-edge polyhedron with conjecturally maximum volume, (2021).
- Hugo Pfoertner, Number of edges incident with the vertices of the 32-edge polyhedron, video (2021).
- Eric Weisstein's World of Mathematics, Golden Rhombus.
- Eric Weisstein's World of Mathematics, Icosahedron.
- Wikipedia, Icosahedron.
- Index entries for algebraic numbers, degree 4.
Programs
-
Maple
evalf[120](csc(2*Pi/5)); # Muniru A Asiru, Dec 11 2018
-
Mathematica
RealDigits[Csc[2 Pi/5], 10, 110][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
-
PARI
sqrt(50-10*sqrt(5))/5 \\ Charles R Greathouse IV, Jan 22 2024
-
Python
from decimal import * getcontext().prec = 110 c = Decimal.sqrt(2 - 2 / Decimal.sqrt(Decimal(5))) print([int(i) for i in str(c) if i != '.']) # Karl V. Keller, Jr., Jul 10 2020
Formula
Equals sqrt(50-10*sqrt(5))/5.
Equals csc(2*Pi/5). - Eric W. Weisstein, Dec 11 2018
Equals 1/Im(e^(3*i*Pi/5)) = 1/Im(e^(3*i*Pi/5) - 1) = sqrt(2 - 2/sqrt(5)). - Karl V. Keller, Jr., Jun 11 2020
Equals 1/A019881. - R. J. Mathar, Jan 17 2021
From Antonio GraciĆ” Llorente, Mar 15 2024: (Start)
Equals Product_{k >= 1} ((10*k - 1)*(10*k + 1))/((10*k - 2)*(10*k + 2)).
Equals Product_{k >= 1} 1/(1 - 1/(25*(2*k - 1)^2)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
A root of 5*x^4 - 20*x^2 + 16=0 (see A121570). - R. J. Mathar, Aug 29 2025
Extensions
Partially rewritten by Charles R Greathouse IV, Feb 02 2011
Comments