A180223 a(n) = (11*n^2 - 7*n)/2.
0, 2, 15, 39, 74, 120, 177, 245, 324, 414, 515, 627, 750, 884, 1029, 1185, 1352, 1530, 1719, 1919, 2130, 2352, 2585, 2829, 3084, 3350, 3627, 3915, 4214, 4524, 4845, 5177, 5520, 5874, 6239, 6615, 7002, 7400, 7809, 8229, 8660
Offset: 0
Links
- B. Berselli, Table of n, a(n) for n = 0..10000.
- B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> n*(11*n-7)/2); # G. C. Greubel, Sep 18 2019
-
Magma
[(11*n^2 - 7*n)/2: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
Maple
A180223:=n->(11*n^2 - 7*n)/2; seq(A180223(n), n=0..30); # Wesley Ivan Hurt, Feb 25 2014
-
Mathematica
Table[(11*n^2 - 7*n)/2, {n, 0, 30}] (* Wesley Ivan Hurt, Feb 25 2014 *) LinearRecurrence[{3,-3,1},{0,2,15},50] (* Harvey P. Dale, Oct 10 2020 *)
-
PARI
a(n)=1/2*(11*n^2 - 7*n);
-
Sage
[n*(11*n-7)/2 for n in (0..30)] # G. C. Greubel, Sep 18 2019
Formula
G.f.: x*(2+9*x)/(1-x)^3. - Bruno Berselli, Aug 19 2010 - corrected in Apr 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with n>2. - Bruno Berselli, Aug 19 2010
a(n) = n + A226492(n). - Bruno Berselli, Jun 11 2013
E.g.f.: x*(4 + 11*x)*exp(x)/2. - G. C. Greubel, Aug 24 2015
Comments