cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180674 a(n) = Fibonacci(n+9) - Fibonacci(9).

Original entry on oeis.org

0, 21, 55, 110, 199, 343, 576, 953, 1563, 2550, 4147, 6731, 10912, 17677, 28623, 46334, 74991, 121359, 196384, 317777, 514195, 832006, 1346235, 2178275, 3524544, 5702853, 9227431, 14930318, 24157783, 39088135, 63245952, 102334121
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+1) (terms doubled) are the Kn18 sums of the Fibonacci(n) triangle A104763. See A180662 for information about these knight and other chess sums.

Crossrefs

Cf. A131524 (Kn11), A001911 (Kn12), A006327 (Kn13), A167616 (Kn14), A180671 (Kn15), A180672 (Kn16), A180673 (Kn17), A180674 (Kn18).

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+9)-34); # G. C. Greubel, Jul 13 2019
  • Magma
    [Fibonacci(n+9) - Fibonacci(9): n in [0..40]]; // Vincenzo Librandi, Apr 24 2011
    
  • Maple
    nmax:=31: with(combinat): for n from 0 to nmax do a(n):=fibonacci(n+9)-fibonacci(9) od: seq(a(n),n=0..nmax);
  • Mathematica
    Fibonacci[9 +Range[0, 40]] -34 (* G. C. Greubel, Jul 13 2019 *)
    LinearRecurrence[{2,0,-1},{0,21,55},40] (* Harvey P. Dale, Aug 24 2024 *)
  • PARI
    concat(0, Vec(x*(21+13*x)/((1-x)*(1-x-x^2)) + O(x^40))) \\ Colin Barker, Feb 24 2017
    
  • PARI
    a(n) = fibonacci(n+9) - fibonacci(9) \\ Charles R Greathouse IV, Feb 24 2017
    
  • Sage
    [fibonacci(n+9)-34 for n in (0..40)] # G. C. Greubel, Jul 13 2019
    

Formula

a(n) = F(n+9) - F(9) with F = A000045.
a(n) = a(n-1) + a(n-2) + 34 for n>1, a(0)=0, a(1)=21, and where 34 = F(9).
G.f.: x*(21 + 13*x)/((1 - x)*(1 - x - x^2)). - Ilya Gutkovskiy, Feb 24 2017
a(n) = 21*A000071(n+2) + 13*A000071(n+1). - Bruno Berselli, Feb 24 2017
From Colin Barker, Feb 24 2017: (Start)
a(n) = (-34 + (2^(-n)*((1-sqrt(5))^n*(-38+17*sqrt(5)) + (1+sqrt(5))^n*(38+17*sqrt(5)))) / sqrt(5)).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)