cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A232076 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

3, 15, 11, 46, 87, 34, 161, 520, 602, 111, 601, 3681, 6624, 3985, 361, 2208, 26587, 91636, 82996, 26713, 1172, 8053, 189404, 1313477, 2265691, 1043172, 178484, 3809, 29415, 1348429, 18480458, 64298979, 56126173, 13105012, 1193537, 12377, 107534
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Table starts
......3........15...........46.............161................601
.....11........87..........520............3681..............26587
.....34.......602.........6624...........91636............1313477
....111......3985........82996.........2265691...........64298979
....361.....26713......1043172........56126173.........3154769585
...1172....178484.....13105012......1389867384.......154723539035
...3809...1193537....164650280.....34420057373......7588839921175
..12377...7979619...2068621706....852404560481....372212311236497
..40218..53352090..25989674166..21109624812630..18256039956940439
.130687.356709629.326528021922.522775448585677.895410839428587845

Examples

			Some solutions for n=3 k=4
..0..0..1..1..0....0..0..1..1..1....0..0..0..1..1....0..1..0..0..1
..0..0..0..0..0....1..1..0..0..0....0..0..0..1..0....1..0..0..1..1
..0..0..1..1..1....1..0..0..0..0....0..0..0..0..0....1..1..0..0..1
..1..1..1..1..1....0..0..1..1..1....1..1..1..1..0....1..0..0..1..0
		

Crossrefs

Column 1 is A180762(n+1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=2: a(n) = 5*a(n-1) +11*a(n-2) +2*a(n-3) -8*a(n-5)
k=3: [order 10]
k=4: [order 30]
k=5: [order 50]
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4)
n=2: [order 8]
n=3: [order 20]
n=4: [order 54]

A302224 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 2, 14, 11, 0, 3, 45, 43, 34, 0, 5, 146, 164, 194, 111, 0, 8, 537, 760, 934, 675, 361, 0, 13, 1934, 3425, 6110, 4237, 2666, 1172, 0, 21, 6861, 15569, 38736, 40395, 21777, 9819, 3809, 0, 34, 24386, 70323, 251254, 338204, 292781, 105585, 37382
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2018

Keywords

Comments

Table starts
.0.....1......1.......2.........3..........5...........8............13
.0.....3.....14......45.......146........537........1934..........6861
.0....11.....43.....164.......760.......3425.......15569.........70323
.0....34....194.....934......6110......38736......251254.......1610569
.0...111....675....4237.....40395.....338204.....3018243......26373655
.0...361...2666...21777....292781....3420704....42508145.....524715109
.0..1172...9819..105585...2043848...32181643...553097760....9458629708
.0..3809..37382..523414..14419536..310963650..7403262824..177191137344
.0.12377.140039.2578424.101511446.2973099477.97939043966.3265007473096

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..0..1..0. .0..0..1..1. .0..0..0..1. .0..0..1..1
..0..1..1..1. .1..1..0..1. .0..1..0..1. .1..1..1..0. .0..1..1..1
..1..0..0..0. .1..1..0..0. .1..0..0..1. .0..0..0..0. .1..0..0..0
..1..1..1..1. .1..0..0..1. .1..1..1..1. .0..1..1..1. .0..0..1..1
..0..0..0..0. .1..1..1..0. .0..0..0..0. .0..0..1..1. .0..0..1..1
		

Crossrefs

Column 2 is A180762.
Row 1 is A000045(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 11]
k=4: [order 30] for n>34
k=5: [order 92] for n>97
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +3*a(n-2) +6*a(n-3) +10*a(n-4) +4*a(n-5) for n>6
n=3: [order 15] for n>17
n=4: [order 54] for n>58

A240783 T(n,k)=Number of nXk 0..1 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 11, 8, 1, 6, 20, 34, 16, 1, 9, 46, 97, 111, 32, 1, 14, 97, 305, 459, 361, 64, 1, 22, 216, 959, 2167, 2187, 1172, 128, 1, 35, 472, 3033, 10150, 15332, 10442, 3809, 256, 1, 56, 1043, 9581, 47920, 106411, 108509, 49861, 12377, 512, 1, 90, 2296, 30354
Offset: 1

Views

Author

R. H. Hardin, Apr 12 2014

Keywords

Comments

Table starts
...1.....1.......1........1..........1...........1.............1..............1
...2.....3.......4........6..........9..........14............22.............35
...4....11......20.......46.........97.........216...........472...........1043
...8....34......97......305........959........3033..........9581..........30354
..16...111.....459.....2167......10150.......47920........226532........1071982
..32...361....2187....15332.....106411......746346.......5228820.......36701371
..64..1172...10442...108509....1120383....11677893.....121621207.....1269199948
.128..3809...49861...767834...11791412...182610635....2827515311....43857418181
.256.12377..238068..5434887..124095989..2856212777...65742420202..1515928067679
.512.40218.1136678.38467875.1306056075.44672652785.1528546759636.52397680462958

Examples

			Some solutions for n=4 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..1..0....0..1..1..0
..1..0..1..0....0..0..1..0....0..1..1..0....1..1..1..0....0..1..1..1
..0..0..1..0....1..0..1..1....1..1..1..0....1..1..1..0....1..0..1..1
..0..1..0..1....1..0..1..1....1..1..0..1....0..1..0..1....1..0..1..1
		

Crossrefs

Column 1 is A000079(n-1)
Column 2 is A180762
Row 2 is A001611(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: a(n) = 5*a(n-1) -a(n-2) -a(n-3) +4*a(n-4) -4*a(n-5) -3*a(n-6) +a(n-7)
k=4: [order 22]
k=5: [order 54]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) -a(n-3)
n=3: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -a(n-5)
n=4: [order 15]
n=5: [order 30] for n>34
n=6: [order 94]

A302381 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 2, 15, 11, 0, 3, 46, 76, 34, 0, 5, 161, 430, 475, 111, 0, 8, 601, 2886, 4640, 2771, 361, 0, 13, 2208, 19215, 56541, 48980, 16451, 1172, 0, 21, 8053, 127535, 688999, 1089035, 514655, 97160, 3809, 0, 34, 29415, 847604, 8334338, 24209608, 20993054
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2018

Keywords

Comments

Table starts
.0.....1.......1.........2............3..............5................8
.0.....3......15........46..........161............601.............2208
.0....11......76.......430.........2886..........19215...........127535
.0....34.....475......4640........56541.........688999..........8334338
.0...111....2771.....48980......1089035.......24209608........535192095
.0...361...16451....514655.....20993054......849467774......34271733937
.0..1172...97160...5421003....404225195....29810775827....2195619257236
.0..3809..574671..57068484...7787623959..1046322460741..140685735128595
.0.12377.3397622.600825641.150008013842.36721875744312.9013655138528774

Examples

			Some solutions for n=5 k=4
..0..0..0..1. .0..1..0..0. .0..1..1..0. .0..0..0..0. .0..1..1..1
..0..1..1..0. .0..0..1..0. .0..0..0..1. .0..0..1..1. .1..0..0..0
..0..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..1..0. .0..1..0..0
..1..0..1..0. .0..0..1..1. .0..0..0..0. .0..1..0..0. .0..0..1..1
..1..1..0..0. .0..1..1..1. .0..0..1..1. .1..1..0..0. .1..1..0..0
		

Crossrefs

Column 2 is A180762.
Row 1 is A000045(n-1).
Row 2 is A232077(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 11]
k=4: [order 26]
k=5: [order 84] for n>86
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
n=3: [order 14] for n>15
n=4: [order 42] for n>43

A302472 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 2, 14, 11, 0, 3, 45, 49, 34, 0, 5, 146, 203, 250, 111, 0, 8, 537, 955, 1401, 1147, 361, 0, 13, 1934, 4556, 10264, 8493, 5486, 1172, 0, 21, 6861, 21843, 78679, 101109, 53575, 25599, 3809, 0, 34, 24386, 103319, 584333, 1141147, 990266, 331044
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2018

Keywords

Comments

Table starts
.0.....1......1........2.........3...........5.............8..............13
.0.....3.....14.......45.......146.........537..........1934............6861
.0....11.....49......203.......955........4556.........21843..........103319
.0....34....250.....1401.....10264.......78679........584333.........4330427
.0...111...1147.....8493....101109.....1141147......12546601.......139759054
.0...361...5486....53575....990266....16983273.....278275383......4682106140
.0..1172..25599...331044...9731423...251512646....6145486847....156721340433
.0..3809.121626..2075845..96648626..3770915891..137317050228...5300304476103
.0.12377.572657.12918219.950374395.55956081186.3037409718914.177368160967073

Examples

			Some solutions for n=5 k=4
..0..1..0..1. .0..0..0..0. .0..1..1..1. .0..0..1..1. .0..0..1..1
..0..0..1..1. .1..1..1..0. .0..0..1..1. .0..1..0..1. .1..0..0..0
..1..1..1..1. .0..0..1..1. .1..1..0..1. .1..0..0..0. .1..1..1..1
..1..0..1..0. .1..0..0..0. .1..0..0..0. .0..1..0..1. .0..0..0..1
..0..0..0..1. .1..1..1..1. .1..1..1..0. .1..1..1..0. .1..1..1..0
		

Crossrefs

Column 2 is A180762.
Row 1 is A000045(n-1).
Row 2 is A302225.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 14]
k=4: [order 43] for n>44
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +3*a(n-2) +6*a(n-3) +10*a(n-4) +4*a(n-5) for n>6
n=3: [order 19] for n>21
n=4: [order 63] for n>66

A302953 T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 2, 15, 11, 0, 3, 46, 86, 34, 0, 5, 161, 519, 587, 111, 0, 8, 601, 3626, 6531, 3815, 361, 0, 13, 2208, 26167, 87901, 80589, 25131, 1172, 0, 21, 8053, 185810, 1248691, 2104533, 998670, 164916, 3809, 0, 34, 29415, 1317541, 17374552, 58679318
Offset: 1

Views

Author

R. H. Hardin, Apr 16 2018

Keywords

Comments

Table starts
.0.....1.......1..........2............3...............5..................8
.0.....3......15.........46..........161.............601...............2208
.0....11......86........519.........3626...........26167.............185810
.0....34.....587.......6531........87901.........1248691...........17374552
.0...111....3815......80589......2104533........58679318.........1596912288
.0...361...25131.....998670.....50519822......2766909379.......147310312318
.0..1172..164916...12365841...1212025201....130376252119.....13578993819785
.0..3809.1083375..153141597..29081585941...6144174797769...1251888966185979
.0.12377.7114906.1896492042.697771332458.289545909430332.115412264434282781

Examples

			Some solutions for n=5, k=4
..0..1..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..0. .0..0..0..1
..1..0..0..0. .0..0..0..1. .1..0..1..0. .1..0..1..1. .0..0..1..1
..1..0..0..0. .1..1..1..0. .0..0..0..1. .0..0..1..0. .1..1..0..1
..0..1..1..0. .1..1..0..1. .1..1..1..0. .0..0..0..0. .1..0..1..1
..1..1..0..1. .0..0..1..1. .0..0..1..1. .0..1..1..0. .0..0..0..0
		

Crossrefs

Column 2 is A180762.
Row 1 is A000045(n-1).
Row 2 is A232077(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: a(n) = 4*a(n-1) +15*a(n-2) +13*a(n-3) -2*a(n-4) -19*a(n-5) -3*a(n-6) +4*a(n-8)
k=4: [order 13]
k=5: [order 43] for n>44
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
n=3: [order 7] for n>9
n=4: [order 24] for n>25
n=5: [order 73] for n>74

A303102 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 2, 15, 11, 0, 3, 46, 77, 34, 0, 5, 161, 431, 486, 111, 0, 8, 601, 2913, 4667, 2869, 361, 0, 13, 2208, 19393, 58160, 49534, 17229, 1172, 0, 21, 8053, 128921, 709333, 1138331, 523578, 102952, 3809, 0, 34, 29415, 857789, 8650205, 25372284, 22292709
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Table starts
.0.....1.......1.........2............3..............5.................8
.0.....3......15........46..........161............601..............2208
.0....11......77.......431.........2913..........19393............128921
.0....34.....486......4667........58160.........709333...........8650205
.0...111....2869.....49534......1138331.......25372284.........568099880
.0...361...17229....523578.....22292709......906385523.......37220475492
.0..1172..102952...5550469....436394066....32409609245.....2441756629583
.0..3809..616065..58797885...8545589681..1158734336743...160164698180399
.0.12377.3685099.622939052.167325743073.41428642572259.10505922762123798

Examples

			Some solutions for n=5 k=4
..0..1..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..1..0..1
..1..0..1..0. .1..1..1..1. .1..1..0..0. .0..1..1..1. .0..0..1..0
..1..0..0..1. .0..0..0..1. .1..1..1..1. .0..0..1..0. .1..0..0..0
..0..1..1..0. .0..1..1..0. .0..0..0..0. .0..1..0..1. .0..1..1..1
..1..1..0..0. .1..1..0..0. .1..1..1..1. .1..0..1..0. .1..0..0..0
		

Crossrefs

Column 2 is A180762.
Row 1 is A000045(n-1).
Row 2 is A232077(n-1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 11]
k=4: [order 26]
k=5: [order 90] for n>91
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
n=3: [order 14] for n>15
n=4: [order 42] for n>43

A302670 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 2, 14, 11, 0, 3, 45, 43, 34, 0, 5, 146, 164, 194, 111, 0, 8, 537, 760, 934, 691, 361, 0, 13, 1934, 3425, 6110, 4267, 2802, 1172, 0, 21, 6861, 15569, 38736, 42367, 21949, 10660, 3809, 0, 34, 24386, 70323, 251254, 352174, 316977, 106793, 41839
Offset: 1

Views

Author

R. H. Hardin, Apr 11 2018

Keywords

Comments

Table starts
.0.....1......1.......2.........3..........5............8............13
.0.....3.....14......45.......146........537.........1934..........6861
.0....11.....43.....164.......760.......3425........15569.........70323
.0....34....194.....934......6110......38736.......251254.......1610569
.0...111....691....4267.....42367.....352174......3204956......28324200
.0...361...2802...21949....316977....3640304.....46360666.....582115385
.0..1172..10660..106793...2320879...35549458....637088915...11181864782
.0..3809..41839..529984..17037458..353912413...8880747825..219692176894
.0.12377.161878.2617548.125456575.3503182605.123521424862.4291098950499

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..0..1..1. .0..1..1..0. .0..1..1..1. .0..1..1..0
..1..1..0..1. .0..1..0..0. .1..0..0..1. .0..0..1..1. .1..0..0..1
..1..1..0..1. .1..0..1..1. .1..1..0..0. .1..0..0..0. .1..0..0..1
..0..0..1..0. .0..0..1..0. .0..1..0..1. .0..1..1..1. .1..1..1..1
..0..0..1..1. .1..1..0..1. .1..0..1..1. .1..0..0..1. .0..0..0..0
		

Crossrefs

Column 2 is A180762.
Row 1 is A000045(n-1).
Row 2 is A302225.
Row 3 is A302226.
Row 4 is A302227.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 14]
k=4: [order 32] for n>35
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +3*a(n-2) +6*a(n-3) +10*a(n-4) +4*a(n-5) for n>6
n=3: [order 15] for n>17
n=4: [order 54] for n>58

A303254 T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 2, 14, 11, 0, 3, 45, 49, 34, 0, 5, 146, 203, 250, 111, 0, 8, 537, 955, 1401, 1183, 361, 0, 13, 1934, 4556, 10264, 8664, 5918, 1172, 0, 21, 6861, 21843, 78679, 106803, 55624, 28680, 3809, 0, 34, 24386, 103319, 584333, 1218385, 1105676, 349273
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2018

Keywords

Comments

Table starts
.0.....1......1........2..........3...........5.............8..............13
.0.....3.....14.......45........146.........537..........1934............6861
.0....11.....49......203........955........4556.........21843..........103319
.0....34....250.....1401......10264.......78679........584333.........4330427
.0...111...1183.....8664.....106803.....1218385......13529019.......153269484
.0...361...5918....55624....1105676....19457754.....322544617......5622650429
.0..1172..28680...349273...11394429...306224454....7600681910....204093228252
.0..3809.141255..2229806..118856245..4895684572..181926316054...7516309079483
.0.12377.691968.14141138.1230109648.77683246701.4319287740641.274539947294004

Examples

			Some solutions for n=5, k=4
..0..0..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..1. .0..0..1..0
..1..1..0..1. .1..0..0..0. .0..0..1..1. .0..1..0..0. .0..1..0..1
..1..0..0..0. .1..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..1..1
..0..1..1..0. .0..1..1..1. .1..1..0..1. .1..1..1..1. .1..0..1..0
..0..0..0..1. .0..0..0..1. .1..0..1..1. .0..0..0..0. .0..1..0..1
		

Crossrefs

Column 2 is A180762.
Row 1 is A000045(n-1).
Row 2 is A302225.
Row 3 is A302473.
Row 4 is A302474.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 14]
k=4: [order 43] for n>44
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +3*a(n-2) +6*a(n-3) +10*a(n-4) +4*a(n-5) for n>6
n=3: [order 19] for n>21
n=4: [order 63] for n>66

A301615 T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2 or 3 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 2, 11, 11, 2, 3, 34, 62, 34, 3, 5, 111, 367, 367, 111, 5, 8, 361, 2131, 3816, 2131, 361, 8, 13, 1172, 12467, 40085, 40085, 12467, 1172, 13, 21, 3809, 72758, 421025, 758338, 421025, 72758, 3809, 21, 34, 12377, 425003, 4422826, 14345706, 14345706
Offset: 1

Views

Author

R. H. Hardin, Mar 24 2018

Keywords

Comments

Table starts
..0.....1.......1.........2...........3..............5................8
..1.....3......11........34.........111............361.............1172
..1....11......62.......367........2131..........12467............72758
..2....34.....367......3816.......40085.........421025..........4422826
..3...111....2131.....40085......758338.......14345706........271301458
..5...361...12467....421025....14345706......488491106......16632517333
..8..1172...72758...4422826...271301458....16632517333....1019565752074
.13..3809..425003..46459647..5131197358...566336198475...62500458737127
.21.12377.2481842.488047397.97045266159.19283659583317.3831336753439723

Examples

			Some solutions for n=5 k=4
..0..0..0..1. .0..1..0..0. .0..0..0..1. .0..1..1..1. .0..1..0..0
..1..1..1..1. .0..1..0..0. .0..0..1..1. .0..1..1..1. .0..1..0..1
..0..1..0..1. .0..0..1..0. .0..0..0..1. .1..0..0..0. .1..1..0..1
..0..1..0..1. .0..1..1..0. .1..1..1..0. .1..1..1..0. .1..0..0..1
..1..1..0..1. .0..0..0..0. .0..0..0..0. .1..1..1..1. .1..0..0..1
		

Crossrefs

Column 1 is A000045(n-1).
Column 2 is A180762.

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 10]
k=4: [order 20] for n>21
k=5: [order 68] for n>69
Showing 1-10 of 10 results.