cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A181802 Triangle read by rows: T(n,k) is k-th smallest divisor of n that is highly composite (A002182).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 6, 12, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 6, 12, 24, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 6, 12, 36, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 6, 12, 24, 48
Offset: 1

Views

Author

Matthew Vandermast, Nov 27 2010

Keywords

Comments

Row n contains A181801(n) numbers. T(n,k) * A180803(n, A181801(n)-k+1) = n.
Row n is identical to row (n+12) if n is not a multiple of 12.

Examples

			First rows read: 1; 1,2; 1; 1,2,4; 1; 1,2,6; 1; 1,2,4; 1; 1,2; 1; 1,2,4,6,12;...
8 has four divisors, of which three (1, 2 and 4) are members of A002182. Row 8 therefore reads 1, 2, 4.
		

Crossrefs

Formula

T(n,k) = n/(A180803(n, A181801(n)-k+1)).

A180802 Number of distinct solutions of sum{i=1..10}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 36, 1011, 23616, 392306, 5046199, 49761514, 400327073, 2659219164, 15184890632, 75357374180, 334037161778, 1331562272672, 4868728554980, 16394472384961, 51588287771056, 152009675182148, 424312447889136
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 10 of A180803

Examples

			Solutions for sum of products of 10 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
		

A180794 Number of distinct solutions of sum{i=1..2}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 4, 8, 20, 28, 56, 64, 122, 150, 218, 216, 424, 346, 544, 667, 863, 733, 1305, 1000, 1752, 1715, 1944, 1728, 3258, 2535, 3142, 3495, 4520, 3382, 6254, 4096, 6486, 6243, 6812, 7315, 10959, 6868, 9400, 10121, 13922, 9271, 16388, 10648, 16520, 17805
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 2 of A180803

Examples

			Solutions for sum of products of 2 0..4 pairs = 0 (mod 5) are
(0*0 + 0*0) (0*0 + 0*1) (0*0 + 0*2) (0*0 + 0*3) (0*0 + 0*4) (0*1 + 0*1)
(0*1 + 0*2) (0*1 + 0*3) (0*1 + 0*4) (0*2 + 0*2) (0*2 + 0*3) (0*2 + 0*4)
(0*3 + 0*3) (0*3 + 0*4) (0*4 + 0*4) (1*1 + 1*4) (1*1 + 2*2) (1*1 + 3*3)
(1*2 + 1*3) (1*2 + 2*4) (1*3 + 3*4) (1*4 + 2*3) (1*4 + 4*4) (2*2 + 2*3)
(2*2 + 4*4) (2*3 + 3*3) (2*4 + 3*4) (3*3 + 4*4)
		

A180795 Number of distinct solutions of Sum_{i=1..3}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 6, 21, 68, 142, 355, 589, 1250, 1946, 3372, 4591, 8432, 10054, 16027, 21564, 31228, 35957, 56543, 61282, 92952, 107265, 139286, 154287, 234348, 238495, 313496, 362400, 469556, 476974, 690961, 660676, 896194, 964301, 1162662, 1252820
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Examples

			Solutions for sum of products of 3 0..2 pairs = 0 (mod 3) are:
(0*0 + 0*0 + 0*0) (0*0 + 0*0 + 0*1) (0*0 + 0*0 + 0*2) (0*0 + 0*1 + 0*1)
(0*0 + 0*1 + 0*2) (0*0 + 0*2 + 0*2) (0*0 + 1*1 + 1*2) (0*0 + 1*2 + 2*2)
(0*1 + 0*1 + 0*1) (0*1 + 0*1 + 0*2) (0*1 + 0*2 + 0*2) (0*1 + 1*1 + 1*2)
(0*1 + 1*2 + 2*2) (0*2 + 0*2 + 0*2) (0*2 + 1*1 + 1*2) (0*2 + 1*2 + 2*2)
(1*1 + 1*1 + 1*1) (1*1 + 1*1 + 2*2) (1*1 + 2*2 + 2*2) (1*2 + 1*2 + 1*2)
(2*2 + 2*2 + 2*2)
		

Crossrefs

Column 3 of A180803.

A180796 Number of distinct solutions of sum{i=1..4}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 9, 45, 205, 620, 1957, 4507, 11171, 22146, 45350, 78661, 151695, 234757, 405587, 621513, 995842, 1396875, 2214555, 2949517, 4476311, 5932188, 8399584, 10743228, 15648807, 19058660, 26160160, 32743869, 43862757, 52161089, 71513890, 82339801
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 4 of A180803

Examples

			Solutions for sum of products of 4 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0) (0*0 + 0*0 + 0*0 + 0*1) (0*0 + 0*0 + 0*1 + 0*1)
(0*0 + 0*0 + 1*1 + 1*1) (0*0 + 0*1 + 0*1 + 0*1) (0*0 + 0*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1) (0*1 + 0*1 + 1*1 + 1*1) (1*1 + 1*1 + 1*1 + 1*1)
		

A180797 Number of distinct solutions of sum{i=1..5}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 12, 87, 549, 2338, 9383, 28783, 85956, 213618, 518268, 1100399, 2370275, 4457359, 8595967, 15130785, 26913348, 43848123, 74308434, 114423976, 184270107, 274414305, 419987334, 601573248, 905711494, 1247825148, 1806542438
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 5 of A180803

Examples

			Solutions for sum of products of 5 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0 + 0*0) (0*0 + 0*0 + 0*0 + 0*0 + 0*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1) (0*0 + 0*0 + 0*0 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1) (0*0 + 0*0 + 0*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1) (0*0 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 1*1 + 1*1 + 1*1 + 1*1) (0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*1 + 0*1 + 0*1 + 1*1 + 1*1) (0*1 + 1*1 + 1*1 + 1*1 + 1*1)
		

A180798 Number of distinct solutions of sum{i=1..6}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 16, 159, 1336, 7770, 39768, 158242, 576277, 1770957, 5103172, 13020114, 32106338, 71312200, 155419661, 313496424, 622375358, 1154635735, 2140048203, 3718742275, 6493401148, 10741764465, 17813177343, 28173574540, 45107483725
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 6 of A180803

Examples

			Solutions for sum of products of 6 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0) (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1) (0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1) (0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1) (0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1) (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1) (0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1) (0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1) (1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
		

A180799 Number of distinct solutions of sum{i=1..7}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 20, 270, 3000, 23282, 151473, 768541, 3422978, 12879078, 44111410, 133919379, 381516366, 988173838, 2446846672, 5633359713, 12527643860, 26226659375, 53655084387, 104124710377, 198817175068, 363133886202, 654527617329
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 7 of A180803

Examples

			Solutions for sum of products of 7 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
		

A180800 Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 25, 435, 6302, 63988, 526152, 3362296, 18294610, 83656074, 340334735, 1222011919, 4033921144, 12105114076, 34125015671, 89380952993, 223056939011, 524533055884, 1188931232028, 2564070855994, 5372508105333, 10797948228909
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 8 of A180803

Examples

			Solutions for sum of products of 8 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
		

A180801 Number of distinct solutions of sum{i=1..9}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 30, 676, 12502, 163480, 1687310, 13449091, 89142751, 492505059, 2376231744, 10047650419, 38448350058, 133156230854, 427570371184, 1270967124805, 3561662099758, 9383313309748, 23597905122682, 56409558588283
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 9 of A180803

Examples

			Solutions for sum of products of 9 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
		
Showing 1-10 of 10 results.