A180965 Number of tatami tilings of a 2 X n grid (with monomers allowed).
1, 2, 6, 13, 29, 68, 156, 357, 821, 1886, 4330, 9945, 22841, 52456, 120472, 276681, 635433, 1459354, 3351598, 7697381, 17678037, 40599916, 93242996, 214144685, 491811165, 1129508406, 2594063186, 5957604017, 13682413681, 31423445328, 72168035504, 165743294353
Offset: 0
Keywords
Examples
Below we show the a(3) = 13 tatami tilings of a 2 X 3 rectangle where v = square of a vertical dimer, h = square of a horizontal dimer, m = monomer: vvv vhh vmm vhh vmv vvm hhv hhm hhv mvv mhh mmv mvm vvv vhh vhh vmm vmv vvm hhv mhh mmv mvv hhm hhv mvm
Links
- A.H.M. Smeets, Table of n, a(n) for n = 0..2770
- A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
- A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Monomer-Dimer Tatami Tilings of Rectangular Regions, Electronic Journal of Combinatorics, 18(1) (2011) P109.
- Index entries for linear recurrences with constant coefficients, signature (2,0,2,-1).
Programs
-
GAP
a:=[1,2,6,13];; for n in [5..35] do a[n]:=2*a[n-1]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 11 2018
-
Magma
I:=[1,2,6,13]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-3)-Self(n-4): n in [1..35]]; // Vincenzo Librandi, Sep 11 2018
-
Maple
seq(coeff(series((1+2*x^2-x^3)/(x^4-2*x^3-2*x+1),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Sep 11 2018
-
Mathematica
CoefficientList[(1+2z^2-z^3)/(1-2z-2z^3+z^4) + O[z]^32, z] (* Jean-François Alcover, May 27 2015 *) LinearRecurrence[{2,0,2,-1},{1,2,6,13},40] (* Harvey P. Dale, Jan 19 2023 *)
-
PARI
my(x='x+O('x^50)); Vec((1+2*x^2-x^3)/(1-2*x-2*x^3+x^4)) \\ Altug Alkan, Sep 10 2018
-
Python
from math import log print(0,1) print(1,2) print(2,6) print(3,13) n,a0,a1,a2,a3 = 3,13,6,2,1 while log(a0)/log(10) < 1000: n,a0,a1,a2,a3 = n+1,2*(a0+a2)-a3,a0,a1,a2 print(n,a0) # A.H.M. Smeets, Sep 10 2018
-
Sage
def A180965_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+2*x^2-x^3)/(1-2*x-2*x^3+x^4) ).list() A180965_list(40) # G. C. Greubel, Apr 06 2021
Formula
G.f.: (1 + 2*x^2 - x^3)/(1 - 2*x - 2*x^3 + x^4).
Lim_{n -> inf} a(n)/a(n-1) = (sqrt(3) + 1)/2 + sqrt(sqrt(3)/2). - A.H.M. Smeets, Sep 10 2018
a(n) = 2*a(n-1) + 2*a(n-3) - a(n-4). - Muniru A Asiru, Sep 11 2018
Comments