cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181433 Numbers k such that 11*k is 5 less than a square.

Original entry on oeis.org

1, 4, 20, 29, 61, 76, 124, 145, 209, 236, 316, 349, 445, 484, 596, 641, 769, 820, 964, 1021, 1181, 1244, 1420, 1489, 1681, 1756, 1964, 2045, 2269, 2356, 2596, 2689, 2945, 3044, 3316, 3421, 3709, 3820, 4124, 4241, 4561, 4684, 5020, 5149, 5501, 5636, 6004
Offset: 1

Views

Author

Jon Perry, Oct 20 2010

Keywords

Comments

a(k)^k+1==0 (mod 3) for k of the form 3*(2*j+1); for other forms of k, a(k)^k-1==0 (mod 3). - Bruno Berselli, Oct 29 2010

Programs

  • Magma
    &cat[ [((4+11*k)^2-5)/11, ((7+11*k)^2-5)/11] : k in [0..23] ]; // Klaus Brockhaus, Oct 20 2010
    
  • Mathematica
    Sort[Flatten[ Table[{((7 + 11 k)^2 - 5)/11, ((4 + 11 k)^2 - 5)/11}, {k, 0, 20, 1}]]]
    Select[Range[7000],IntegerQ[Sqrt[11#+5]]&] (* Harvey P. Dale, Nov 21 2014 *)
  • PARI
    x='x+O('x^50); Vec(x*(1+3*x+14*x^2+3*x^3+x^4)/((1-x)^3*(1+x)^2)) \\ G. C. Greubel, Feb 25 2017

Formula

G.f.: x*(1+3*x+14*x^2+3*x^3+x^4)/((1-x)^3*(1+x)^2). - Alexander R. Povolotsky, Oct 21 2010
a(n) = (22*n*(n-1) - 5*(2*n-1)*(-1)^n + 3)/8.
a(n) = a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5) for n>5, a(1)=1, a(2)=4, a(3)=20, a(4)=29, a(5)=61.
Sum_{i=1..n} a(i) = n*(22*n^2-15*(-1)^n-13)/24.

Extensions

Formulas and more terms from Klaus Brockhaus and Bruno Berselli, Oct 20 2010
Sum added and superfluous formula removed by Bruno Berselli, Oct 22 2010 - Nov 15 2010