cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181482 The sum of the first n integers, with every third integer taken negative.

Original entry on oeis.org

1, 3, 0, 4, 9, 3, 10, 18, 9, 19, 30, 18, 31, 45, 30, 46, 63, 45, 64, 84, 63, 85, 108, 84, 109, 135, 108, 136, 165, 135, 166, 198, 165, 199, 234, 198, 235, 273, 234, 274, 315, 273, 316, 360, 315, 361, 408, 360, 409, 459, 408, 460, 513, 459, 514, 570, 513, 571, 630
Offset: 1

Views

Author

Jon Perry, Oct 23 2010

Keywords

Comments

The partial sum for the first 10^k terms are 76, 57256, 55722556, 55572225556, 55557222255556,..., i.e., the palindrome 5{k}2{k-1}5{k} plus 1+2*10^(2*k-1). - R. J. Cano, Mar 10 2013, edited by M. F. Hasler, Mar 25 2013

Examples

			a(7) = 1 + 2 - 3 + 4 + 5 - 6 + 7 = 10.
		

Crossrefs

Programs

  • Haskell
    a181482 n = a181482_list !! (n-1)
    a181482_list = scanl1 (+) $ zipWith (*) [1..] $ cycle [1, 1, -1]
    -- Reinhard Zumkeller, Nov 23 2014
  • JavaScript
    c = 0; for (i = 1; i < 100; i++) {c += Math.pow(-1, (i + 1) % 3)*i; document.write(c, ", ");} // Jon Perry, Feb 17 2013
    
  • JavaScript
    c=0; for (i = 1; i < 100; i++) { c += (1 - (i + 1) % 3 % 2 * 2) * i; document.write(c + ", "); } // Jon Perry, Mar 03 2013
    
  • Magma
    I:=[1,3,0,4,9,3,10]; [n le 7 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..60]]; // Vincenzo Librandi, Feb 17 2013
    
  • Mathematica
    a[n_] := Sum[If[Mod[j, 3] == 0, -j, j], {j, 1, n}]; Table[a[i], {i, 1, 50, 1}] (* Jon Perry *)
    tri[n_] := n (n + 1)/2; f[n_] := tri@ n - 6 tri@ Floor[n/3]; Array[f, 63] (* Robert G. Wilson v, Oct 24 2010 *)
    CoefficientList[Series[-(1 + 2*x + 2*x^3 + x^4 - 3*x^2)/((1 + x + x^2)^2*(x - 1)^3), {x, 0,30}], x] (* Vincenzo Librandi, Feb 17 2013 *)
    Table[Sum[k * (-1)^Boole[Mod[k, 3] == 0], {k, n}], {n, 60}] (* Alonso del Arte, Feb 24 2013 *)
    With[{nn=20},Accumulate[Times@@@Partition[Riffle[Range[3nn],{1,1,-1}],2]]] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    a(n)=sum(k=1,n,k*((-1)^(k%3==0)) )  \\ R. J. Cano, Feb 26 2013
    
  • PARI
    a(n)={my(y=n\3);n*(n+1)\2-3*y*(y+1)} \\ R. J. Cano, Feb 28 2013
    

Formula

From R. J. Mathar, Oct 23 2010: (Start)
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7).
G.f.: -x*(1+2*x+2*x^3+x^4-3*x^2) / ( (1+x+x^2)^2*(x-1)^3 ).
a(n) = 2*A061347(n+1)/9 +4/9 + n*(n+1)/6 + 2*b(n)/3 where b(3k+1) = 0, b(3k) = -3k - 1 and b(3k+2) = 3k + 3. (End)
a(n) = sum((i+1)*A131561(i), i=0..n-1) = A000217(n)-6*A000217(floor(n/3)). [Bruno Berselli, Dec 10 2010]
a(0) = 0, a(n) = a(n-1) + (-1)^((n + 1) mod 3)*n - Jon Perry, Feb 17 2013
a(n) = n*(n+1)/2-3*floor(n/3)*(floor(n/3)+1). - R. J. Cano, Mar 01 2013 [Same as Berselli's formula. - Ed.]
a(3k) = 3k(k-1)/2. - Jon Perry, Mar 01 2013
a(0) = 0, a(n) = a(n-1) + (1 - ((n+1) mod 3 mod 2) * 2) * n. - Jon Perry, Mar 03 2013

Extensions

More terms added by R. J. Mathar, Oct 23 2010