cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181890 a(n) = 8*n^2 + 14*n + 5.

Original entry on oeis.org

5, 27, 65, 119, 189, 275, 377, 495, 629, 779, 945, 1127, 1325, 1539, 1769, 2015, 2277, 2555, 2849, 3159, 3485, 3827, 4185, 4559, 4949, 5355, 5777, 6215, 6669, 7139, 7625, 8127, 8645, 9179, 9729, 10295, 10877, 11475, 12089, 12719, 13365, 14027, 14705, 15399, 16109, 16835, 17577
Offset: 0

Views

Author

Paul Curtz, Feb 01 2011

Keywords

Comments

A160050(4*n+1) = A033954(n); A160050(4*n+2) = A001107(n); the third quadrisection is a(n).
First 16 terms of clockwise spiral for odd numbers are as follows:
.
13--15--17--19
| |
11 1---3 21
| | |
9---7---5 23
|
31--29--27--25
.
a(n) comes from the third vertical.
Sequence found by reading the line from 5, in the direction 5, 27, in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Dec 25 2011

Crossrefs

Programs

Formula

a(n) = A160050(4*n+3).
a(n) = (2*n+1)*(4*n+5).
a(n) = a(n-1) + 16*n + 6.
a(n) = 2*a(n-1) - a(n-2) + 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (5 + 12*x - x^2)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 25 2011
a(n) = A014635(n+1) - 1. - Omar E. Pol, Dec 25 2011
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=0} 1/a(n) = 2/3 - Pi/12 - log(2)/6 = 0.289342748774193011891907697817...
Sum_{n>=0} (-1)^n / a(n) = (1 + sqrt(2))*Pi/12 - 2/3 - sqrt(2)*log(tan(Pi/8))/6 = 0.173114712692423461587883724528539... (End)
a(n) = A014106(2*n+1). - Rick L. Shepherd, Aug 06 2019
E.g.f.: (5 + 22*x + 8*x^2)*exp(x). - Elmo R. Oliveira, Oct 19 2024