A160050
Numerator of the Harary number for the star graph s_n.
Original entry on oeis.org
0, 1, 5, 9, 7, 10, 27, 35, 22, 27, 65, 77, 45, 52, 119, 135, 76, 85, 189, 209, 115, 126, 275, 299, 162, 175, 377, 405, 217, 232, 495, 527, 280, 297, 629, 665, 351, 370, 779, 819, 430, 451, 945, 989, 517, 540, 1127, 1175, 612, 637, 1325, 1377, 715, 742, 1539
Offset: 1
0, 1, 5/2, 9/2, 7, 10, 27/2, 35/2, 22, 27, ...
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Eric Weisstein's World of Mathematics, Harary Index.
- Index entries for linear recurrences with constant coefficients, signature (3,-6,10,-12,12,-10,6,-3,1).
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3))); // G. C. Greubel, Sep 21 2018
-
f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 3] &, 58]
Rest[CoefficientList[Series[x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3), {x, 0, 50}], x]] (* G. C. Greubel, Sep 21 2018 *)
-
s=vector(40,n,1/4*(n+2)*(n-1)) /* fractions */
vector(#s,n,numerator(s[n])) /* this sequence */ \\ Joerg Arndt, Jan 04 2011
-
x='x+O('x^50); concat([0], Vec(x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3))) \\ G. C. Greubel, Sep 21 2018
A187857
T(n,k)=Number of n-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on a kXk board summed over all starting positions.
Original entry on oeis.org
1, 4, 0, 9, 5, 0, 16, 27, 2, 0, 25, 65, 81, 0, 0, 36, 119, 254, 216, 0, 0, 49, 189, 578, 968, 486, 0, 0, 64, 275, 1030, 2754, 3320, 846, 0, 0, 81, 377, 1610, 5428, 11986, 9932, 1206, 0, 0, 100, 495, 2318, 9237, 26836, 47962, 26584, 1008, 0, 0, 121, 629, 3154, 14040
Offset: 1
Some n=4 solutions for 4X4
..0..0..1..0....4..0..0..0....0..0..0..0....0..3..0..4....0..0..0..0
..0..3..0..0....0..3..0..0....0..2..1..0....0..0..2..1....3..2..0..0
..0..0..2..0....0..0..2..0....0..4..0..0....0..0..0..0....0..1..0..0
..0..0..0..4....0..0..0..1....0..3..0..0....0..0..0..0....0..0..4..0
A159231
Primes p such that 8*p^2-2*p-1 divides Fibonacci(p).
Original entry on oeis.org
37, 97, 577, 727, 1297, 3037, 3067, 4447, 4567, 5557, 7507, 7867, 8647, 9067, 9157, 12967, 17257, 20107, 20407, 21787, 22147, 23677, 25447, 27817, 28687, 29347, 30187, 32587, 33487, 35617, 38377, 42157, 42667, 42967, 43207, 45697, 46447, 47497, 49477
Offset: 1
-
[p : p in PrimesUpTo(49477) | IsZero(Fibonacci(p) mod (8*p^2-2*p-1))]; // Arkadiusz Wesolowski, Nov 09 2013
-
Select[Prime@Range[5084], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
-
forprime(p=2, 49477, if(Mod(fibonacci(p), 8*p^2-2*p-1)==0, print1(p, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013
A159259
Positive numbers n such that 8*n^2-2*n-1 divides Fibonacci(n).
Original entry on oeis.org
27, 37, 97, 577, 687, 727, 777, 807, 1297, 1707, 1917, 2067, 2487, 2787, 2977, 3027, 3037, 3067, 3277, 3367, 3417, 3507, 3837, 4047, 4257, 4377, 4447, 4567, 4717, 5137, 5557, 5637, 5677, 5917, 5967, 6057, 6187, 6327, 7077, 7087, 7357, 7407, 7507, 7597
Offset: 1
-
[n : n in [1..7597] | IsZero(Fibonacci(n) mod (8*n^2-2*n-1))] // Arkadiusz Wesolowski, Nov 09 2013
-
Select[Range[7597], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
-
for(n=1, 7597, if(Mod(fibonacci(n), 8*n^2-2*n-1)==0, print1(n, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013
A159234
Composite numbers n such that 8*n^2-2*n-1 divides the primitive part U(n) of Fibonacci(n).
Original entry on oeis.org
27, 807, 1707, 2977, 3027, 3277, 4717, 5137, 5677, 5917, 5967, 6187, 7087, 7357, 7597, 7707, 8217, 9117, 9297, 9387, 9667, 9877, 9927, 9997, 10387, 11097, 11647, 11797, 12727, 13407, 13867, 15757, 15987, 16327, 16507, 16857, 17347, 17767, 18237, 18817, 18997
Offset: 1
-
lst = {1}; Do[f = Fibonacci[a]; Do[f = f/GCD[f, lst[[d]]], {d, Most[Divisors[a]]}]; AppendTo[lst, f], {a, 2, 19000}]; Flatten[Table[If[! PrimeQ[n] && Mod[lst[[n]], 8*n^2 - 2*n - 1] == 0, n, {}], {n, 19000}]] (* Arkadiusz Wesolowski, Dec 12 2011 *)
A220021
Number of cyclotomic cosets of 11 mod 10^n.
Original entry on oeis.org
10, 27, 65, 119, 189, 275, 377, 495, 629, 779, 945, 1127, 1325, 1539, 1769, 2015, 2277, 2555, 2849, 3159, 3485, 3827, 4185, 4559, 4949, 5355, 5777, 6215, 6669, 7139, 7625, 8127, 8645, 9179, 9729, 10295, 10877, 11475, 12089, 12719, 13365, 14027, 14705, 15399, 16109, 16835, 17577, 18335, 19109, 19899
Offset: 1
a(2) = 27 because there are 27 cyclotomic cosets of 11 mod 100:
{1, 11, 21, 31, 41, 51, 61, 71, 81, 91}
{3, 33, 63, 93, 23, 53, 83, 13, 43, 73}
{7, 77, 47, 17, 87, 57, 27, 97, 67, 37}
{9, 99, 89, 79, 69, 59, 49, 39, 29, 19}
{2, 22, 42, 62, 82}
{12, 32, 52, 72, 92}
{4, 44, 84, 24, 64}
{14, 54, 94, 34, 74}
{6, 66, 26, 86, 46}
{16, 76, 36, 96, 56}
{8, 88, 68, 48, 28}
{18, 98, 78, 58, 38}
{5, 55}
{15, 65}
{25, 75}
{35, 85}
{45, 95}
{0}
{10}
{20}
{30}
{40}
{50}
{60}
{70}
{80}
{90}
-
a[n_] := DivisorSum[10^n, EulerPhi[#] / MultiplicativeOrder[11, #] &]; Array[a, 50] (* Jean-François Alcover, Dec 18 2015 *)
-
for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(11, d)))", "))
Showing 1-6 of 6 results.
Comments