cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A160050 Numerator of the Harary number for the star graph s_n.

Original entry on oeis.org

0, 1, 5, 9, 7, 10, 27, 35, 22, 27, 65, 77, 45, 52, 119, 135, 76, 85, 189, 209, 115, 126, 275, 299, 162, 175, 377, 405, 217, 232, 495, 527, 280, 297, 629, 665, 351, 370, 779, 819, 430, 451, 945, 989, 517, 540, 1127, 1175, 612, 637, 1325, 1377, 715, 742, 1539
Offset: 1

Views

Author

Eric W. Weisstein, Apr 30 2009

Keywords

Examples

			0, 1, 5/2, 9/2, 7, 10, 27/2, 35/2, 22, 27, ...
		

Crossrefs

Cf. A130658 (denominators), A033954 (quadrisection), A001107 (quadrisection), A181890 (quadrisection).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3))); // G. C. Greubel, Sep 21 2018
  • Mathematica
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 3] &, 58]
    Rest[CoefficientList[Series[x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3), {x, 0, 50}], x]] (* G. C. Greubel, Sep 21 2018 *)
  • PARI
    s=vector(40,n,1/4*(n+2)*(n-1)) /* fractions */
    vector(#s,n,numerator(s[n])) /* this sequence */ \\ Joerg Arndt, Jan 04 2011
    
  • PARI
    x='x+O('x^50); concat([0], Vec(x^2*(-1 - 2*x - 5*x^4 + 3*x^5 - 2*x^6 + x^7)/((x - 1)^3*(x^2 + 1)^3))) \\ G. C. Greubel, Sep 21 2018
    

Formula

Numerator of (1/4)*(n+2)*(n-1). - Joerg Arndt, Jan 04 2011
It appears that a(n + 1) = A060819(n-1) * A060819(n + 2). - Paul Curtz, Dec 23 2010 [Corrected by Joerg Arndt, Jan 04 2011]
G.f.: x^2*(-1-2*x-5*x^4+3*x^5-2*x^6+x^7) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Jan 04 2011
a(1+4*n) = (A000217(n+1)-1)/2, a(2+4*n) = (A000217(n+2)-1)/2, a(3+4*n) = A000217(n+3)-1, a(4+4*n) = A000217(n+4)-1. - Paul Curtz, Dec 23 2010.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). This is not the shortest recurrence. -Paul Curtz, Mar 27 2011
a(1+3*n) = numerator of 9*n*(n+1)/4 = 9*A064038(1+n). - Paul Curtz, Apr 06 2011
a(n) = (n-1)*(n+2)*(3-i^((n-2)*(n-1)))/8, where i=sqrt(-1). - Bruno Berselli, Apr 07 2011, corrected by Vaclav Kotesovec, Aug 09 2022
Sum_{n>=2} 1/a(n) = 13/9 + Pi/6. - Amiram Eldar, Aug 09 2022

Extensions

Edited by N. J. A. Sloane, Dec 23 2010

A187857 T(n,k)=Number of n-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 5, 0, 16, 27, 2, 0, 25, 65, 81, 0, 0, 36, 119, 254, 216, 0, 0, 49, 189, 578, 968, 486, 0, 0, 64, 275, 1030, 2754, 3320, 846, 0, 0, 81, 377, 1610, 5428, 11986, 9932, 1206, 0, 0, 100, 495, 2318, 9237, 26836, 47962, 26584, 1008, 0, 0, 121, 629, 3154, 14040
Offset: 1

Views

Author

R. H. Hardin Mar 14 2011

Keywords

Comments

Table starts
.1.4....9.....16......25.......36........49.......64.......81.....100.....121
.0.5...27.....65.....119......189.......275......377......495.....629.....779
.0.2...81....254.....578.....1030......1610.....2318.....3154....4118....5210
.0.0..216....968....2754.....5428......9237....14040....19837...26628...34413
.0.0..486...3320...11986....26836.....50378....81124...120051..166504..220483
.0.0..846...9932...47962...126397....262409...452766...707541.1017934.1387600
.0.0.1206..26584..180750...568870...1314428..2456614..4062007.6094090
.0.0.1008..61668..636102..2432312...6343874.12918800.22675997
.0.0..414.124880.2090520..9934272..29607932.65963326
.0.0....0.219008.6387404.38766870.133665550

Examples

			Some n=4 solutions for 4X4
..0..0..1..0....4..0..0..0....0..0..0..0....0..3..0..4....0..0..0..0
..0..3..0..0....0..3..0..0....0..2..1..0....0..0..2..1....3..2..0..0
..0..0..2..0....0..0..2..0....0..4..0..0....0..0..0..0....0..1..0..0
..0..0..0..4....0..0..0..1....0..3..0..0....0..0..0..0....0..0..4..0
		

Crossrefs

Row 2 is A181890(n-2)

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 8*k^2 - 18*k + 9 for k>1
Empirical: T(3,k) = 64*k^2 - 252*k + 238 for k>3
Empirical: T(4,k) = 497*k^2 - 2652*k + 3448 for k>5
Empirical: T(5,k) = 3763*k^2 - 25044*k + 40644 for k>7
Empirical: T(6,k) = 28294*k^2 - 224508*k + 433614 for k>9
Empirical: T(7,k) = 211612*k^2 - 1941340*k + 4328678 for k>11
Empirical: T(8,k) = 1575830*k^2 - 16367550*k + 41250447 for k>13
Empirical: T(9,k) = 11710007*k^2 - 135575032*k + 380311550 for k>15
Empirical: T(10,k) = 86897560*k^2 - 1108193530*k + 3420011978 for k>17

A159231 Primes p such that 8*p^2-2*p-1 divides Fibonacci(p).

Original entry on oeis.org

37, 97, 577, 727, 1297, 3037, 3067, 4447, 4567, 5557, 7507, 7867, 8647, 9067, 9157, 12967, 17257, 20107, 20407, 21787, 22147, 23677, 25447, 27817, 28687, 29347, 30187, 32587, 33487, 35617, 38377, 42157, 42667, 42967, 43207, 45697, 46447, 47497, 49477
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 06 2009

Keywords

Crossrefs

Subsequence of A159259. Supersequence of A215158.

Programs

  • Magma
    [p : p in PrimesUpTo(49477) | IsZero(Fibonacci(p) mod (8*p^2-2*p-1))]; // Arkadiusz Wesolowski, Nov 09 2013
    
  • Mathematica
    Select[Prime@Range[5084], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
  • PARI
    forprime(p=2, 49477, if(Mod(fibonacci(p), 8*p^2-2*p-1)==0, print1(p, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013

A159259 Positive numbers n such that 8*n^2-2*n-1 divides Fibonacci(n).

Original entry on oeis.org

27, 37, 97, 577, 687, 727, 777, 807, 1297, 1707, 1917, 2067, 2487, 2787, 2977, 3027, 3037, 3067, 3277, 3367, 3417, 3507, 3837, 4047, 4257, 4377, 4447, 4567, 4717, 5137, 5557, 5637, 5677, 5917, 5967, 6057, 6187, 6327, 7077, 7087, 7357, 7407, 7507, 7597
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 07 2009

Keywords

Comments

The prime numbers of this sequence are in A159231.

Crossrefs

Programs

  • Magma
    [n : n in [1..7597] | IsZero(Fibonacci(n) mod (8*n^2-2*n-1))] // Arkadiusz Wesolowski, Nov 09 2013
    
  • Mathematica
    Select[Range[7597], Mod[Fibonacci[#], 8*#^2 - 2*# - 1] == 0 &] (* Arkadiusz Wesolowski, Dec 12 2011 *)
  • PARI
    for(n=1, 7597, if(Mod(fibonacci(n), 8*n^2-2*n-1)==0, print1(n, ", "))); \\ Arkadiusz Wesolowski, Nov 09 2013

A159234 Composite numbers n such that 8*n^2-2*n-1 divides the primitive part U(n) of Fibonacci(n).

Original entry on oeis.org

27, 807, 1707, 2977, 3027, 3277, 4717, 5137, 5677, 5917, 5967, 6187, 7087, 7357, 7597, 7707, 8217, 9117, 9297, 9387, 9667, 9877, 9927, 9997, 10387, 11097, 11647, 11797, 12727, 13407, 13867, 15757, 15987, 16327, 16507, 16857, 17347, 17767, 18237, 18817, 18997
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 06 2009

Keywords

Crossrefs

Subsequence of A159259.

Programs

  • Mathematica
    lst = {1}; Do[f = Fibonacci[a]; Do[f = f/GCD[f, lst[[d]]], {d, Most[Divisors[a]]}]; AppendTo[lst, f], {a, 2, 19000}]; Flatten[Table[If[! PrimeQ[n] && Mod[lst[[n]], 8*n^2 - 2*n - 1] == 0, n, {}], {n, 19000}]] (* Arkadiusz Wesolowski, Dec 12 2011 *)

A220021 Number of cyclotomic cosets of 11 mod 10^n.

Original entry on oeis.org

10, 27, 65, 119, 189, 275, 377, 495, 629, 779, 945, 1127, 1325, 1539, 1769, 2015, 2277, 2555, 2849, 3159, 3485, 3827, 4185, 4559, 4949, 5355, 5777, 6215, 6669, 7139, 7625, 8127, 8645, 9179, 9729, 10295, 10877, 11475, 12089, 12719, 13365, 14027, 14705, 15399, 16109, 16835, 17577, 18335, 19109, 19899
Offset: 1

Views

Author

V. Raman, Jan 27 2013

Keywords

Comments

How is this related to A181890? - R. J. Mathar, Apr 11 2013

Examples

			a(2) = 27 because there are 27 cyclotomic cosets of 11 mod 100:
{1, 11, 21, 31, 41, 51, 61, 71, 81, 91}
{3, 33, 63, 93, 23, 53, 83, 13, 43, 73}
{7, 77, 47, 17, 87, 57, 27, 97, 67, 37}
{9, 99, 89, 79, 69, 59, 49, 39, 29, 19}
{2, 22, 42, 62, 82}
{12, 32, 52, 72, 92}
{4, 44, 84, 24, 64}
{14, 54, 94, 34, 74}
{6, 66, 26, 86, 46}
{16, 76, 36, 96, 56}
{8, 88, 68, 48, 28}
{18, 98, 78, 58, 38}
{5, 55}
{15, 65}
{25, 75}
{35, 85}
{45, 95}
{0}
{10}
{20}
{30}
{40}
{50}
{60}
{70}
{80}
{90}
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[10^n, EulerPhi[#] / MultiplicativeOrder[11, #] &]; Array[a, 50] (* Jean-François Alcover, Dec 18 2015 *)
  • PARI
    for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(11, d)))", "))

Formula

Conjecture: a(n) = 8*n^2-2*n-1 for n>1. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4. G.f.: x*(5*x^3-14*x^2+3*x-10) / (x-1)^3. - Colin Barker, Apr 13 2013
Showing 1-6 of 6 results.