cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182007 Decimal expansion of 2*sin(Pi/5).

Original entry on oeis.org

1, 1, 7, 5, 5, 7, 0, 5, 0, 4, 5, 8, 4, 9, 4, 6, 2, 5, 8, 3, 3, 7, 4, 1, 1, 9, 0, 9, 2, 7, 8, 1, 4, 5, 5, 3, 7, 1, 9, 5, 3, 0, 4, 8, 7, 5, 2, 8, 6, 2, 9, 1, 9, 8, 2, 1, 4, 4, 5, 4, 4, 9, 6, 1, 5, 1, 4, 5, 5, 6, 9, 4, 8, 3, 2, 4, 7, 0, 3, 9, 1, 5, 0, 1, 7, 0, 0
Offset: 1

Views

Author

Stanislav Sykora, Apr 06 2012

Keywords

Comments

The golden ratio phi is the real part of 2*exp(i*Pi/5), while this constant c is the corresponding imaginary part. It is handy, for example, in simplifying metric expressions for Platonic solids (particularly for regular icosahedron and dodecahedron).
Note that c^2+A001622^2 = 4; c*A001622 = A188593 = 2*A019881; c = 2*A019845.
Edge length of a regular pentagon with unit circumradius. - Stanislav Sykora, May 07 2014
This is a constructible number (see A003401 for more details). Moreover, since phi is also constructible, (2^k)*exp(i*Pi/5), for any integer k, is a constructible complex number. - Stanislav Sykora, May 02 2016
rms(c, phi) := sqrt((c^2+phi^2)/2) = sqrt(2) = A002193.

Examples

			1.1755705045849462583374119...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2*Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
  • Maple
    evalf(2*sin(Pi/5),100); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    RealDigits[2*Sin[Pi/5],10,120][[1]] (* Harvey P. Dale, Sep 29 2012 *)
  • PARI
    2*sin(Pi/5) \\ Stanislav Sykora, May 02 2016
    

Formula

Equals sqrt(3-phi).
Equals sqrt((5-sqrt(5))/2). - Jean-François Alcover, May 21 2013
Equals Product_{k>=0} ((10*k + 4)*(10*k + 6))/((10*k + 3)*(10*k + 7)). - Antonio Graciá Llorente, Mar 25 2024
Equals Product_{k>=1} (1 - (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A019845 = 1/A300074. - Hugo Pfoertner, Nov 23 2024