A182469 Triangle read by rows in which row n lists the odd divisors of n.
1, 1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 3, 5, 15, 1, 1, 17, 1, 3, 9, 1, 19, 1, 5, 1, 3, 7, 21, 1, 11, 1, 23, 1, 3, 1, 5, 25, 1, 13, 1, 3, 9, 27, 1, 7, 1, 29, 1, 3, 5, 15, 1, 31, 1, 1, 3, 11, 33, 1, 17, 1, 5, 7, 35, 1
Offset: 1
Examples
The triangle begins: . 1 {1} . 2 {1} . 3 {1,3} . 4 {1} . 5 {1,5} . 6 {1,3} . 7 {1,7} . 8 {1} . 9 {1,3,9} . 10 {1,5} . 11 {1,11} . 12 {1,3} . 13 {1,13} . 14 {1,7} . 15 {1,3,5,15} . 16 {1} .
Links
- Reinhard Zumkeller, Rows n = 1..2500 of triangle, flattened
Crossrefs
Programs
-
Haskell
a182469 n k = a182469_tabf !! (n-1) !! (k-1) a182469_row = a027750_row . a000265 a182469_tabf = map a182469_row [1..]
-
Mathematica
Flatten[Table[Select[Divisors[n],OddQ],{n,40}]] (* Harvey P. Dale, Aug 13 2012 *) Flatten[Table[Divisors[n / 2^IntegerExponent[n, 2]], {n, 40}]] (* Amiram Eldar, May 02 2025 *)
-
PARI
tabf(nn) = {for (n=1, nn, fordiv(n, d, if (d%2, print1(d, ", "))); print(););} \\ Michel Marcus, Apr 22 2017
-
PARI
row(n) = divisors(n >> valuation(n, 2)); \\ Amiram Eldar, May 02 2025
-
Python
from sympy import divisors def row(n): return [d for d in divisors(n) if d % 2] for n in range(1, 21): print(row(n)) # Indranil Ghosh, Apr 22 2017
Comments