A182608 Number of conjugacy classes in GL(n,17).
1, 16, 288, 4896, 83504, 1419552, 24137280, 410333472, 6975752256, 118587788080, 2015993812032, 34271894799648, 582622235726688, 9904578007265568, 168377826533765184, 2862423051073925184, 48661191875230982480, 827240261878925204256, 14063084452060314850656
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Crossrefs
Programs
-
Magma
/* The program does not work for n>4: */ [1] cat [NumberOfClasses(GL(n, 17)) : n in [1..4]];
-
Maple
with(numtheory): b:= proc(n) b(n):= add(phi(d)*17^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Nov 03 2012
-
Mathematica
b[n_] := Sum[EulerPhi[d]*17^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); gf=prod(n=1,N, (1-x^n)/(1-17*x^n) ); v=Vec(gf) /* Joerg Arndt, Jan 24 2013 */
Formula
G.f.: Product_{k>=1} (1-x^k)/(1-17*x^k). - Alois P. Heinz, Nov 03 2012
Extensions
More terms from Alois P. Heinz, Nov 03 2012
MAGMA code edited by Vincenzo Librandi, Jan 24 2013