cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A182621 a(n) is the concatenation of the binary numbers that are the divisors of n written in base 2.

Original entry on oeis.org

1, 110, 111, 110100, 1101, 11011110, 1111, 1101001000, 1111001, 1101011010, 11011, 110111001101100, 11101, 1101111110, 1111011111, 110100100010000, 110001, 11011110100110010, 110011, 110100101101010100, 11111110101, 110101110110, 110111, 110111001101000110011000
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2010

Keywords

Comments

a(n) is the concatenation of the numbers of row n of triangle A182620. The first repeated element is a(15) = 1111011111 = a(479), where a(15) is the concatenation of 1, 11, 101 and 1111 but a(479) is the concatenation of 1 and 111011111. See A182620 and A182622 for more information.

Examples

			The divisors of 10 are 1, 2, 5, 10, which written in base 2 are 1, 10, 101, 1010. The concatenation of 1, 10, 101, 1010 is 1101011010, so a(10) = 1101011010.
		

Crossrefs

Programs

  • Mathematica
    A182621[n_]:=FromDigits[Flatten[IntegerDigits[Divisors[n],2]]];Array[A182621,50] (* Paolo Xausa, Aug 31 2023 *)
  • PARI
    a(n) = fromdigits(concat(apply(binary,divisors(n)))); \\ Kevin Ryde, May 02 2023
  • Python
    from sympy import divisors
    def a(n): return int("".join(bin(d)[2:] for d in divisors(n)))
    print([a(n) for n in range(1, 25)]) # Michael S. Branicky, Apr 20 2022
    
  • Sage
    A182621 = lambda n: Integer(''.join(d.str(base=2) for d in divisors(n))) # D. S. McNeil, Dec 19 2010
    

A182620 Triangle T(n,k) read by rows in which row n lists the divisors of n, written in base 2.

Original entry on oeis.org

1, 1, 10, 1, 11, 1, 10, 100, 1, 101, 1, 10, 11, 110, 1, 111, 1, 10, 100, 1000, 1, 11, 1001, 1, 10, 101, 1010, 1, 1011, 1, 10, 11, 100, 110, 1100, 1, 1101, 1, 10, 111, 1110, 1, 11, 101, 1111, 1, 10, 100, 1000, 10000, 1, 10001, 1, 10, 11
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2010

Keywords

Comments

Numbers of triangle A027750, written in base 2.

Examples

			The divisors of 10 are 1, 2, 5, 10 then row 10 lists the binary numbers 1, 10, 101, 1010.
Triangle begins:
1,
1, 10,
1, 11,
1, 10, 100,
1, 101,
1, 10, 11, 110,
1, 111,
1, 10, 100, 1000,
1, 11, 1001,
1, 10, 101, 1010,
1, 1011,
1, 10, 11, 100, 110, 1100,
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 10 do for d in divisors(n) do printf("%d, ",convert(d,binary)); od:printf("\n");od: # Nathaniel Johnston, Apr 19 2011
  • Mathematica
    Table[FromDigits[IntegerDigits[#,2]]&/@Divisors[n],{n,20}]//Flatten (* Harvey P. Dale, May 31 2018 *)

Formula

T(n,k) = A007088(A027750(n,k)).

Extensions

a(38)-a(55) from Nathaniel Johnston, Apr 19 2011

A182624 Primes in A182623.

Original entry on oeis.org

7, 13, 29, 61, 101, 107, 199, 211, 229, 241, 419, 449, 467, 479, 769, 823, 829, 859, 991, 1009, 1021, 1571, 1601, 1637, 1667, 1697, 1733, 1811, 1847, 1877, 1901, 1907, 1931, 3079, 3109, 3229, 3271, 3307, 3331, 3457, 3499, 3529, 3541, 3547
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2010

Keywords

Crossrefs

Programs

  • Maple
    lim:=1800: with(numtheory):A182624:={}:for n from 1 to lim do s:="": for d in divisors(n) do s:= cat(s,convert(convert(d, binary),string)): od: m:=convert(parse(s),decimal,binary):if(isprime(m))then A182624:=A182624 union {m};fi: od:
    A182624:=sort(convert(A182624,list)):for n from 1 to nops(A182624) do if(A182624[n]>2*lim)then break:fi:printf("%d, ",A182624[n]):od: # Nathaniel Johnston, Apr 19 2011

Extensions

More terms from Vincenzo Librandi, Jan 30 2011
a(16) - a(44) from Nathaniel Johnston, Apr 19 2011

A182623 Numbers n with property that there is a number m such that if we concatenate the binary representations of the divisors of m in increasing order we get the binary representation of n.

Original entry on oeis.org

1, 6, 7, 13, 15, 27, 29, 49, 51, 52, 55, 61, 63, 101, 105, 107, 111, 117, 121, 123, 125, 195, 199, 201, 207, 211, 217, 222, 225, 229, 231, 235, 237, 241, 255, 387, 393, 395, 405, 407, 413, 419, 423, 429, 435, 437, 441, 447, 449, 453, 455, 467, 479, 483, 485, 489, 495, 497, 507, 769, 775, 781, 783, 789
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2010

Keywords

Comments

Numbers of A182622 in increasing order (without repetitions).

Examples

			858 written in base 2 is 1101011010. The string "1101011010" may be broken up into four parts (1, 10, 101, 1010) that are also the binary representations of a sequence of numbers in increasing order: 1, 2, 5, 10. These numbers are the divisors of 10. Then 858 is in the sequence.
		

Crossrefs

A182628 Triangle T(n,k) read by rows in which row n lists the number of digits of the binary expansion of the divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 1, 2, 2, 3, 1, 3, 1, 2, 3, 4, 1, 2, 4, 1, 2, 3, 4, 1, 4, 1, 2, 2, 3, 3, 4, 1, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 1, 2, 2, 3, 4, 5, 1, 5, 1, 2, 3, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 5, 1, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2010

Keywords

Comments

Row n lists the number of digits of the numbers in the n-th row of triangle A182620.

Examples

			Triangle begins:
1,
1, 2,
1, 2,
1, 2, 3,
1, 3,
1, 2, 2, 3,
1, 3,
1, 2, 3, 4,
1, 2, 4,
1, 2, 3, 4,
1, 4,
1, 2, 2, 3, 3, 4,
		

Crossrefs

Row sums give A182627.

Programs

  • Maple
    with(numtheory):for n from 1 to 12 do for d in divisors(n) do printf("%d, ",length(convert(convert(d, binary),string))); od:printf("\n"); od: # Nathaniel Johnston, Apr 19 2011

Extensions

a(38)-a(79) from Nathaniel Johnston, Apr 19 2011

A231116 Numbers k such that the total number of digits of all the divisors of k written in base 2 is equal to k.

Original entry on oeis.org

1, 3, 10, 24
Offset: 1

Views

Author

Jaroslav Krizek, Nov 03 2013

Keywords

Comments

Sequence is finite with 4 terms.
Numbers k such that the concatenation of their divisors written in base 2 contains k digits.
Subsequence of finite sequence: 1, 2, 3, 4, 6, 8, 10, 12, 24 (numbers k such that the total number of digits of all the divisors of k written in base 2 is greater than or equal to k).
Numbers k such that A182627(k) = k.

Examples

			24 is in the sequence because the concatenation of the divisors of 24 in base 2 [(1, 10, 11, 100, 110, 1000, 1100, 11000) -> 110111001101000110011000] contains 24 digits.
		

Crossrefs

Showing 1-6 of 6 results.