cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182751 a(1)=1, a(2)=3, a(3)=6; a(n) = 3*a(n-2) for n > 3.

Original entry on oeis.org

1, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

For n >= 3: a(n) = the smallest number > a(n-1) such that ((a(n-2) + a(n-1))*(a(n-2) + a(n))*(a(n-1) + a(n)))/(a(n-2)*a(n-1)*a(n)) is an integer (= 10 for n >= 4).
Number of necklaces with n-1 beads and 3 colors that are the same when turned over and hence have reflection symmetry. Example: For n=4 there are 9 necklaces with the colors A, B and C: AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC. The only necklaces without reflection symmetry are ABC and ACB. - Herbert Kociemba, Nov 24 2016

Examples

			For n = 5; a(3) = 6, a(4) = 9, a(5) = 18 before ((6+9)*(6+18)*(9+18)) / (6*9*18) = 10.
		

Crossrefs

Essentially the same as A038754 (cf. formula).

Programs

  • Magma
    I:=[3,6]; [1] cat [n le 2 select I[n] else 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    Join[{1},RecurrenceTable[{a[2]==3,a[3]==6,a[n]==3a[n-2]},a[n],{n,50}]] (* or *) Transpose[NestList[{#[[2]],#[[3]],3#[[2]]}&,{1,3,6},49]][[1]] (* Harvey P. Dale, Oct 19 2011 *)
    Rest@ CoefficientList[Series[x (1 + 3 x + 3 x^2)/(1 - 3 x^2), {x, 0, 34}], x] (* Michael De Vlieger, Nov 24 2016 *)
    Join[{1}, LinearRecurrence[{0, 3}, {3, 6}, 30]] (* Vincenzo Librandi, Nov 25 2016 *)
  • PARI
    x='x+O('x^30); Vec(x*(1+3*x+3*x^2)/(1-3*x^2)) \\ G. C. Greubel, Jan 11 2018
    

Formula

a(n) = A038754(n) for n >= 2.
a(2*k) = (3/2)*a(2*k-1) for k >= 2, a(2*k+1) = 2*a(2*k).
G.f.: x*(1 + 3*x + 3*x^2)/(1 - 3*x^2). - Herbert Kociemba, Nov 24 2016