cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A038754 a(2n) = 3^n, a(2n+1) = 2*3^n.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489
Offset: 0

Views

Author

Henry Bottomley, May 03 2000

Keywords

Comments

In general, for the recurrence a(n) = a(n-1)*a(n-2)/a(n-3), all terms are integers iff a(0) divides a(2) and first three terms are positive integers, since a(2n+k) = a(k)*(a(2)/a(0))^n for all nonnegative integers n and k.
Equals eigensequence of triangle A070909; (1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909. - Gary W. Adamson, May 15 2010
The a(n) represent all paths of length (n+1), n >= 0, starting at the initial node on the path graph P_5, see the second Maple program. - Johannes W. Meijer, May 29 2010
a(n) is the difference between numbers of multiple of 3 evil (A001969) and odious (A000069) numbers in interval [0, 2^(n+1)). - Vladimir Shevelev, May 16 2012
A "half-geometric progression": to obtain a term (beginning with the third one) we multiply the before previous one by 3. - Vladimir Shevelev, May 21 2012
Pisano periods: 1, 2, 1, 4, 8, 2, 12, 4, 1, 8, 10, 4, 6, 12, 8, 8, 32, 2, 36, 8, ... . - R. J. Mathar, Aug 10 2012
Numbers k such that the k-th cyclotomic polynomial has a root mod 3. - Eric M. Schmidt, Jul 31 2013
Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, Jun 05 2014
Also, the number of walks of length n on the graph 0--1--2--3--4 starting at vertex 1. - Sean A. Irvine, Jun 03 2025

Examples

			In the interval [0,2^5) we have 11 multiples of 3 numbers, from which 10 are evil and only one (21) is odious. Thus a(4) = 10 - 1 = 9. - _Vladimir Shevelev_, May 16 2012
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a038754 n = a038754_list !! n
    a038754_list = concat $ transpose [a000244_list, a008776_list]
    -- Reinhard Zumkeller, Oct 19 2015
    
  • Magma
    [n le 2 select n else 3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 18 2016
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-2]+2 od: seq(a[n]+1, n=0..34); # Zerinvary Lajos, Mar 20 2008
    with(GraphTheory): P:=5: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=35; for n from 1 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P) od: seq(a(n),n=1..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{0,3},{1,2},40] (* Harvey P. Dale, Jan 26 2014 *)
    CoefficientList[Series[(1+2x)/(1-3x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2016 *)
    Module[{nn=20,c},c=3^Range[0,nn];Riffle[c,2c]] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    a(n)=(1/6)*(5-(-1)^n)*3^floor(n/2)
    
  • PARI
    a(n)=3^(n>>1)<
    				
  • SageMath
    [2^(n%2)*3^((n-(n%2))/2) for n in range(61)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = a(n-1)*a(n-2)/a(n-3) with a(0)=1, a(1)=2, a(2)=3.
a(2*n) = (3/2)*a(2*n-1) = 3^n, a(2*n+1) = 2*a(2*n) = 2*3^n.
From Benoit Cloitre, Apr 27 2003: (Start)
a(1)=1, a(n)= 2*a(n-1) if a(n-1) is odd, or a(n)= (3/2)*a(n-1) if a(n-1) is even.
a(n) = (1/6)*(5-(-1)^n)*3^floor(n/2).
a(2*n) = a(2*n-1) + a(2*n-2) + a(2*n-3).
a(2*n+1) = a(2*n) + a(2*n-1). (End)
G.f.: (1+2*x)/(1-3*x^2). - Paul Barry, Aug 25 2003
From Reinhard Zumkeller, Sep 11 2003: (Start)
a(n) = (1 + n mod 2) * 3^floor(n/2).
a(n) = A087503(n) - A087503(n-1). (End)
a(n) = sqrt(3)*(2+sqrt(3))*(sqrt(3))^n/6 - sqrt(3)*(2-sqrt(3))*(-sqrt(3))^n/6. - Paul Barry, Sep 16 2003
From Reinhard Zumkeller, May 26 2008: (Start)
a(n) = A140740(n+2,2).
a(n+1) = a(n) + a(n - n mod 2). (End)
If p(i) = Fibonacci(i-3) and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1), (i<=j), A(i,j)=-1, (i=j+1), and A(i,j)=0 otherwise. Then, for n>=1, a(n-1) = (-1)^n det A. - Milan Janjic, May 08 2010
a(n) = A182751(n) for n >= 2. - Jaroslav Krizek, Nov 27 2010
a(n) = Sum_{i=0..2^(n+1), i==0 (mod 3)} (-1)^A000120(i). - Vladimir Shevelev, May 16 2012
a(0)=1, a(1)=2, for n>=3, a(n)=3*a(n-2). - Vladimir Shevelev, May 21 2012
Sum_(n>=0) 1/a(n) = 9/4. - Alexander R. Povolotsky, Aug 24 2012
a(n) = sqrt(3*a(n-1)^2 + (-3)^(n-1)). - Richard R. Forberg, Sep 04 2013
a(n) = 2^((1-(-1)^n)/2)*3^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Aug 11 2014
From Reinhard Zumkeller, Oct 19 2015: (Start)
a(2*n) = A000244(n), a(2*n+1) = A008776(n).
For n > 0: a(n+1) = a(n) + if a(n) odd then min{a(n), a(n-1)} else max{a(n), a(n-1)}, see also A128588. (End)
E.g.f.: (7*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x) - 4)/3. - Stefano Spezia, Feb 17 2022
Sum_{n>=0} (-1)^n/a(n) = 3/4. - Amiram Eldar, Dec 02 2022

A027671 Number of necklaces with n beads of 3 colors, allowing turning over.

Original entry on oeis.org

1, 3, 6, 10, 21, 39, 92, 198, 498, 1219, 3210, 8418, 22913, 62415, 173088, 481598, 1351983, 3808083, 10781954, 30615354, 87230157, 249144711, 713387076, 2046856566, 5884491500, 16946569371, 48883660146, 141217160458, 408519019449, 1183289542815
Offset: 0

Views

Author

Keywords

Comments

Number of bracelets of n beads using up to three different colors. - Robert A. Russell, Sep 24 2018

Examples

			For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - _Robert A. Russell_, Sep 24 2018
		

References

  • J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
  • M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.

Crossrefs

a(n) = A081720(n,3), n >= 3. - Wolfdieter Lang, Jun 03 2012
Column 3 of A051137.
a(n) = A278639(n) + A182751(n+1).
Equals A001867 - A278639.

Programs

  • Mathematica
    Needs["Combinatorica`"];  Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i,1,n}], {n,1,30}]] (* Geoffrey Critzer, Sep 29 2012 *)
    Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *)
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n,{n,mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
    k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
  • PARI
    a(n,k=3) = if(n==0,1,(k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) );
    vector(55,n,a(n-1)) \\ Joerg Arndt, Oct 20 2019

Formula

G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 3*x^n)/n + (1+3*x+3*x^2)/(1-3*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
a(0) = 1; a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=3 is the maximum number of colors.
(See A075195 formulas.) - Richard L. Ollerton, May 04 2021
2*a(n) = A182751(n+1) + A001867(n), n>0.

Extensions

More terms from Christian G. Bower

A284855 Array read by antidiagonals: T(n,k) = number of necklaces with n beads and k colors that are the same when turned over.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 6, 1, 6, 15, 16, 18, 8, 1, 7, 21, 25, 40, 27, 12, 1, 8, 28, 36, 75, 64, 54, 16, 1, 9, 36, 49, 126, 125, 160, 81, 24, 1, 10, 45, 64, 196, 216, 375, 256, 162, 32, 1, 11, 55, 81, 288, 343, 756, 625, 640, 243, 48, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 04 2017

Keywords

Comments

Number of periodic palindromes of length n using a maximum of k different symbols.
From Petros Hadjicostas, Sep 02 2018: (Start)
According to Christian Bower's theory of transforms, we have boxes of different sizes and different colors. The size of a box is determined by the number of balls it can hold. In this case, we assume all balls are the same and are unlabeled. Assume also that the number of possible colors a box with m balls can have is given by c(m). We place the boxes on a circle at equal distances from each other. Two configurations of boxes on the circle are considered equivalent if one can be obtained from the other by rotation. We are interested about circular configurations of boxes that are circular palindromes (i.e., necklaces with boxes that are the same when turned over). Let b(n) be the number of circularly palindromic configurations of boxes on a circle when the total number of balls in the boxes is n (and each box contains at least one ball).
Bower calls the sequence (b(n): n >= 1), the CPAL ("circular palindrome") transform of the input sequence (c(m): m >= 1). If the g.f. of the input sequence (c(m): m >= 1) is C(x) = Sum_{m>=1} c(m)*x^m, then the g.f. of the output sequence (b(n): n >= 1) is B(x) = Sum_{n >= 1} b(n)*x^n = (1 + C(x))^2/(2*(1 - C(x^2))) - 1/2.
In the current sequence, each box holds only one ball but can have one of k colors. Hence, c(1) = k but c(m) = 0 for m >= 2. Thus, C(x) = k*x. Then, for fixed k, the output sequence is (b(n): n >= 1) = (T(n, k): n >= 1), where T(n, k) = number of necklaces with n beads and k colors that are the same when turned over. If we let B_k(x) = Sum_{n>=1} T(n, k)*x^n, then B_k(x) = (1 + k*x)^2/(2*(1 - k*x^2)) - 1/2. From this, we can easily prove the formulae below.
Note that T(n, k=2) - 1 is the total number of Sommerville symmetric cyclic compositions of n. See pp. 301-304 in his paper in the links below. To see why this is the case, we use MacMahon's method of representing a cyclic composition of n with a necklace of 2 colors (see p. 273 in Sommerville's paper where the two "colors" are an x and a dot . rather than B and W). Given a Sommerville symmetrical composition b_1 + ... + b_r of n (with b_i >= 1 for all i and 1 <= r <= n), create the following circularly palindromic necklace with n beads of 2 colors: Start with a B bead somewhere on the circle and place b_1 - 1 W beads to the right of it; place a B bead to the right of the W beads (if any) followed by b_2 - 1 W beads; and so on. At the end, place a B bead followed with b_r - 1 W beads. (If b_i = 1 for some i, then a B bead follows a B bead since there are 0 W beads between them.) We thus get a circularly palindromic necklace with n beads of two colors. (The only necklace we cannot get with this method is the one than has all n beads colored W.)
It is interesting that the representation of a necklace of length n, say s_1, s_2, ..., s_n, as a periodic sequence (..., s_{-2}, s_{-1}, s_0, s_1, s_2, ...) with the property s_i = s_{i+n} for all i, as was done by Marks R. Nester in Chapter 2 of his 1999 PhD thesis, was considered by Sommerville in his 1909 paper (in the very first paragraph of his paper). (End)

Examples

			Table starts:
1  2   3    4    5     6     7      8      9     10 ...
1  3   6   10   15    21    28     36     45     55 ...
1  4   9   16   25    36    49     64     81    100 ...
1  6  18   40   75   126   196    288    405    550 ...
1  8  27   64  125   216   343    512    729   1000 ...
1 12  54  160  375   756  1372   2304   3645   5500 ...
1 16  81  256  625  1296  2401   4096   6561  10000 ...
1 24 162  640 1875  4536  9604  18432  32805  55000 ...
1 32 243 1024 3125  7776 16807  32768  59049 100000 ...
1 48 486 2560 9375 27216 67228 147456 295245 550000 ...
...
For n = 4 and k = 2, the palindromic necklaces are 0000, 0001, 0011, 0111, 0101, 1111 so T(4,2) = 6. Necklaces are only counted up to cyclic equivalence.
For n = 4 and k = 2, using MacMahon's bijection, with B = 0 and W = 1, the corresponding Sommerville symmetrical cyclic compositions of n = 4 are as follows: 1+1+1+1, 1+1+2, 1+3, 4, 2+2 (with none for 1111). If we let B = 1 and W = 0, we get the corresponding symmetrical cyclic compositions of n=4: (none for 0000) 4, 1+3, 1+1+2, 2+2, 1+1+1+1. (All these cyclic compositions must viewed on a circle.) - _Petros Hadjicostas_, Sep 02 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for the pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n+1)/2)];
    Table[a[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
  • PARI
    a(n,k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2));
    for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print(););

Formula

T(2*n, k) = (k^(n+1) + k^n) / 2.
T(2*n + 1, k) = k^(n+1).
T(n, k) = 2 * A081720(n, k) - A075195(n, k).
From Petros Hadjicostas, Sep 02 2018: (Start)
For fixed k >= 1, the k-th column (T(n, k): n >= 1) is the CPAL ("circular palindrome") transform of the sequence k, 0, 0, ...
G.f. of column k: Sum_{n>=1} T(n,k)*x^n = (1 + k*x)^2/(2*(1 - k*x^2)) - 1/2. (End)

A182752 a(1) = 1, a(2) = 6, for n >= 3; a(n) = the smallest number greater than a(n-1) such that [[a(n-2) + a(n-1)] * [a(n-2) + a(n)] * [a(n-1) + a(n)]] / [a(n-2) * a(n-1) * a(n)] is an integer.

Original entry on oeis.org

1, 6, 14, 84, 196, 1176, 2744, 16464, 38416, 230496, 537824, 3226944, 7529536, 45177216, 105413504, 632481024, 1475789056, 8854734336, 20661046784
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Examples

			a(5)=196 since (14+84)*(14+x)*(84+x)/(14*84*x) is an integer for x=196, but not an integer for any x satisfying 85 <= x <= 195.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[OddQ[n],6*a,7/3 a]}; NestList[nxt,{1,1},20][[All,2]] (* Harvey P. Dale, Aug 14 2020 *)

Formula

a(2n) = 6 * a(2n-1), a(2n+1) = 7/3 * a(2n).
G.f.: (1 + 6*x)/(1 - 14*x^2). - Georg Fischer, Nov 17 2022

A182754 a(1) = 1, a(2) = 21, a(n) = 77*a(n-2) for n>=3.

Original entry on oeis.org

1, 21, 77, 1617, 5929, 124509, 456533, 9587193, 35153041, 738213861, 2706784157, 56842467297, 208422380089, 4376869981869, 16048523266853, 337018988603913, 1235736291547681, 25950462122501301, 95151694449171437, 1998185583432600177, 7326680472586200649
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

For n >= 3, a(n) = the smallest number h > a(n-1) such that [[a(n-2) + a(n-1)] * [a(n-2) + a(n)] * [a(n-1) + a(n)]] / [a(n-2) * a(n-1) * a(n)] is an integer (= 104).

Examples

			For n = 4; a(2) = 21, a(3) = 77, a(4) = 1617 before [(21+77)*(21+1617)*(77+1617)]  / (21*77*1617) = 104.
		

Crossrefs

Programs

  • Magma
    I:=[1,21]; [n le 2 select I[n] else 77*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
    
  • Mathematica
    LinearRecurrence[{0,77},{1,21},30] (* Harvey P. Dale, Sep 05 2013 *)
  • PARI
    A182754(n)=if(n%2,77^(n\2),77^(n\2-1)*21)
    
  • PARI
    Vec(x*(1 + 21*x) / (1 - 77*x^2) + O(x^40)) \\ Colin Barker, Jan 11 2018
    
  • Python
    def aupton(nn):
      dmo = [1, 21, 77]
      for n in range(3, nn+1): dmo.append(77*dmo[-2])
      return dmo[:nn]
    print(aupton(21)) # Michael S. Branicky, Jan 21 2021

Formula

a(2*n) = 21*a(2*n-1), a(2*n+1) = (11/3)*a(2*n).
G.f.: x*(1+21*x) / ( 1 - 77*x^2 ).
From Colin Barker, Jan 11 2018: (Start)
a(n) = 3*7^(n/2)*11^(n/2-1) for n even.
a(n) = 77^((n-1)/2) for n odd. (End)

Extensions

More terms from Harvey P. Dale, Sep 05 2013

A182757 Numbers k > 1 such that is no sequence B of type: {b(1) = 1, b(2) = k, for n >= 3; b(n) = the smallest number h > b(n-1) such that [[b(n-2) + b(n-1)] * [b(n-2) + h] * [b(n-1) + h]] / [b(n-2) * b(n-1) * h] is an integer}.

Original entry on oeis.org

4, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

With 1 complement of A182756.

Crossrefs

A182753 Expansion of (1 + 14*x)/(1 - 35*x^2).

Original entry on oeis.org

1, 14, 35, 490, 1225, 17150, 42875, 600250, 1500625, 21008750, 52521875, 735306250, 1838265625, 25735718750, 64339296875, 900750156250, 2251875390625, 31526255468750, 78815638671875, 1103418941406250, 2758547353515625, 38619662949218750, 96549157373046875
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

a(1) = 1, a(2) = 14, for n >= 3; a(n) = the smallest number h > a(n-1) such that [[a(n-2) + a(n-1)] * [a(n-2) + h] * [a(n-1) + h]] / [a(n-2) * a(n-1) * h] is an integer (= 54).
5^(floor((n - 1)/2)) | a(n), n>=1. - G. C. Greubel, Jan 11 2018

Examples

			For n = 5; a(3) = 35, a(4) = 490, a(5) = 1225 before [(35+490)*(35+1225)*(490+1225)]  / (35*490*1225) = 54.
		

Crossrefs

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 35*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    LinearRecurrence[{0, 35}, {1, 14}, 30] (* or *) CoefficientList[Series[(1 + 14*x)/(1-35*x^2), {x,0,50}], x] (* G. C. Greubel, Jan 11 2018 *)
  • PARI
    Vec((1+14*x)/(1-35*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
    

Formula

a(2n) = 14 * a(2n-1), a(2n+1) = (5/2) * a(2n).
a(2n) = 14*35^(n-1), a(2n+1) = 35^n.

Extensions

Terms a(15) onward added by G. C. Greubel, Jan 11 2018

A182755 Expansion of (1+35*x)/(1-90*x^2).

Original entry on oeis.org

1, 35, 90, 3150, 8100, 283500, 729000, 25515000, 65610000, 2296350000, 5904900000, 206671500000, 531441000000, 18600435000000, 47829690000000, 1674039150000000, 4304672100000000, 150663523500000000, 387420489000000000, 13559717115000000000, 34867844010000000000
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

a(1) = 1, a(2) = 35, for n >= 3; a(n) = the smallest number h > a(n-1) such that [[a(n-2) + a(n-1)] * [a(n-2) + h] * [a(n-1) + h]] / [a(n-2) * a(n-1) * h] is an integer (= 130). (conjectured)
10^(floor((n - 1)/2)) | a(n), for n>=1. - G. C. Greubel, Jan 11 2018

Examples

			For n = 4; a(2) = 35, a(3) = 90, a(4) = 3150 before [(35+90)*(35+3150)*(90+3150)]  / (35*90*3150) = 130.
		

Crossrefs

Programs

  • Magma
    I:=[1,35]; [n le 2 select I[n] else 90*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 11 2018
  • Mathematica
    LinearRecurrence[{0,90}, {1,35}, 50] (* or *) CoefficientList[Series[(1 + 35*x)/(1-90*x^2), {x,0,50}], x] (* G. C. Greubel, Jan 11 2018 *)
  • PARI
    Vec((1+35*x)/(1-90*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
    

Formula

a(2n) = 35* a(2n-1), a(2n+1) = (18/7) * a(2n).
a(2n) = 35*90^(n-1), a(2n+1) = 90^n.

Extensions

Terms a(12) onward added by G. C. Greubel, Jan 11 2018

A182756 Numbers k > 1 such that are sequences B_k of type: {b(1) = 1, b(2) = k, for n >= 3; b(n) = the smallest number h > b(n-1) such that [[b(n-2) + b(n-1)] * [b(n-2) + h] * [b(n-1) + h]] / [b(n-2) * b(n-1) * h] is an integer}.

Original entry on oeis.org

2, 3, 6, 14, 21, 35, 77, 90, 234, 286, 611
Offset: 1

Views

Author

Jaroslav Krizek, Nov 27 2010

Keywords

Comments

With 1 complement of A182757.
Is this a union/superset of A032908 and A101879? - Ralf Stephan, Nov 29 2010

Examples

			For n =1; a(n) = 2; B_2 = A038754(n): 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, …
For n =2; a(n) = 3; B_3 = A182751(n): 1, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, …
For n =3; a(n) = 6; B_6 = A182752(n): 1, 6, 14, 84, 196, 1176, 2744, 16464, 38416, …
For n =4; a(n) = 14; B_14 = A182753(n): 1, 14, 35, 490, 1225, 17150, 42875, …
For n =5; a(n) = 21; B_21 = A182754(n): 1, 21, 77, 1617, 5929, 124509, 456533, …
For n =6; a(n) = 35; B_35 = A182755(n): 1, 35, 90, 3150, 8100, 283500, 729000, …
		

Crossrefs

A278639 Number of pairs of orientable necklaces with n beads and up to 3 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.

Original entry on oeis.org

0, 0, 0, 1, 3, 12, 38, 117, 336, 976, 2724, 7689, 21455, 60228, 168714, 475037, 1338861, 3788400, 10742588, 30556305, 87112059, 248967564, 713032782, 2046325125, 5883428618, 16944975048, 48880471500, 141212377489, 408509453511, 1183275193908, 3431504760514
Offset: 0

Views

Author

Herbert Kociemba, Nov 24 2016

Keywords

Comments

Number of chiral bracelets of n beads using up to three different colors.

Examples

			Example: The 3 orientable necklaces with 4 beads and the colors A, B and C are AABC, BBAC and CCAB. The turned-over necklaces AACB, BBCA and CCBA are not included in the count.
For n=6, the three chiral pairs using just two colors are AABABB-AABBAB, AACACC-AACCAC, and BBCBCC-BBCCBC.  The other 35 use three colors. - _Robert A. Russell_, Sep 24 2018
		

Crossrefs

Column 3 of A293496.
Cf. A059076 (2 colors).
a(n) = (A001867(n) - A182751(n-1)) / 2.
Equals A001867 - A027671.
a(n) = A027671(n) - A182751(n-1).

Programs

  • Mathematica
    mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,3],{x,0,mx}],x]
    k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) -(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

G.f.: k=3, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} binomial(k,i)*x^i / (1 - k*x^2))/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
Showing 1-10 of 10 results.