cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002439 Glaisher's T numbers.

Original entry on oeis.org

1, 23, 1681, 257543, 67637281, 27138236663, 15442193173681, 11828536957233383, 11735529528739490881, 14639678925928297567703, 22427641105413135505628881, 41393949926819051111431239623, 90592214447886493688036507587681, 231969423543894989257690172433129143
Offset: 0

Views

Author

Keywords

Comments

Kashaev's invariant for the (3,2)-torus knot. See Hikami 2003. For other Kashaev invariants see A208679, A208680, and A208681. - Peter Bala, Mar 01 2012
From Peter Bala, Dec 18 2021: (Start)
Glaisher's T numbers occur in the evaluation of the L-function L(X_12,s) := Sum_{k >= 1} X_12(k)/k^s for positive even values of s, where X_12(n) = A110161(n) is a nonprincipal Dirichlet character mod 12: the result is L(X_12,2*n+2) = a(n)/(6*sqrt(3)*36^n*(2*n+1)!) * Pi^(2*n+2).
We make the following conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 50 begins [1, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, ...] and appears to have a pre-period of length 1 and a period of length 10 = (1/2)*phi(50).
2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k.
If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients.
3)(i) a(m*n) == a(m)^n (mod 2^k) for k = 2*v_2(m) + 7, where v_p(i) denotes the p-adic valuation of i.
(ii) a(m*n) == a(m)^n (mod 3^k) for k = 2*v_3(m) + 2.
4)(i) a(2*m*n) == a(n)^(2*m) (mod 2^k) for k = v_2(m) + 7
(ii) a((2*m+1)*n) == a(n)^(2*m+1) (mod 2^k) for k = v_2(m) + 7.
5)(i) a(3*m*n) == a(n)^(3*m) (mod 3^k) for k = v_3(m) + 2
(ii) a((3*m+1)*n) == a(n)^(3*m+1) (mod 3^k) for k = v_3(m) + 2
(iii) a((3*m+2)*n) == a(n)^(3*m+2) (mod 3^2).
6) For prime p >= 5, a((p-1)/2*n*m) == a((p-1)/2*n)^m (mod p^k) for k = v_p(m-1) + 1. (End)

Examples

			G.f. = 1 + 23*x + 1681*x^2 +257543*x^3 + 67637281*x^4 + 27138236663*x^5 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
  • J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 76.
  • J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., 29 (1898), 1-168.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections: A156175, A156176.
Twice this sequence gives A000191. A208679, A208680, A208681.

Programs

  • Magma
    m:=32; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Sin(2*x)/(2*Cos(3*x)) )); [Factorial(2*n-1)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jul 04 2019
    
  • Maple
    A002439 := proc(n) option remember; if n = 0 then 1; else (-4)^n-add((-9)^k*binomial(2*n+1, 2*k)*procname(n-k), k=1..n+1) ; end if; end proc:
  • Mathematica
    a[n_] := a[n] = (-4)^n - Sum[(-9)^k*Binomial[2n + 1, 2k]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Dec 05 2011, after Maple *)
    With[{nn=30},Take[CoefficientList[Series[Sin[2x]/(2Cos[3x]),{x,0,nn}], x]Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)
    a[n_] := -(-4)^n 3^(1 + 2 n) EulerE[1 + 2 n, 1/6]  (* Bill Gosper, Oct 12 2015 *)
  • PARI
    {a(n) = my(m=n+1); if( m<2, m>0, (-4)^(m-1) - sum(k=1, m, (-9)^k * binomial(2*m-1, 2*k) * a(n-k)))}; /* Michael Somos, Dec 11 1999 */
    
  • Sage
    m = 32; T = taylor(sin(2*x)/(2*cos(3*x)), x, 0, m); [factorial(2*n+1)*T.coefficient(x, 2*n+1) for n in (0..(m-2)/2)] # G. C. Greubel, Jul 04 2019

Formula

Q_{2n+1}(sqrt(3))/sqrt(3), where the polynomials Q_n() are defined in A104035. - N. J. A. Sloane, Nov 06 2009
E.g.f.: sin(2*x)/(2*cos(3*x)) = Sum a(n)*x^(2*n+1)/(2*n+1)!.
With offset 1 instead of 0: a(1)=1, a(n)=(-4)^(n-1) - Sum_{k=1..n} (-9)^k*C(2*n-1, 2*k)*a(n-k).
a(n) = -(-4)^n*3^(2n+1)*E_{2n+1}(1/6), where E is an Euler polynomial. - Bill Gosper, Aug 08 2001, corrected Oct 12 2015.
From Peter Bala, Mar 24 2009: (Start)
Basic hypergeometric generating function: exp(-t)*Sum {n = 0..inf} Product {k = 1..n} (1-exp(-24*k*t)) = 1 + 23*t + 1681*t^2/2! + .... For other sequences with generating functions of a similar type see A000364, A000464, A002105, A079144, A158690.
a(n) = (1/2)*(-1)^(n+1)*L(-2*n-1), where L(s) is a Dirichlet L-function for a Dirichlet character with modulus 12: L(s) = 1 - 1/5^s - 1/7^s + 1/11^s + - - + .... See the Andrew's link. (End)
From Peter Bala, Jan 21 2011: (Start)
Let I = sqrt(-1) and w = exp(2*Pi*I/6). Then
a(n) = I/sqrt(3) *sum {k = 0..2*n+2} w^(n-k) *sum {j = 1..2*n+2} (-1)^(k-j) *binomial(2*n+2,k-j) *(2*j-1)^(2*n+1).
This formula can be used to obtain congruences for a(n). For example, for odd prime p we find a(p-1) = 1 (mod p) and a((p-1)/2) = (-1)^((p-1)/2) (mod p).
Cf. A002437 and A182825. (End)
a(n) = (-1)^n/(4*n+4)*12^(2*n+1)*sum {k = 1..12} X(k)*B(2*n+2,k/12), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 12 given by X(n) = 0 except for X(12*n+1) = X(12*n+11) = 1 and X(12*n+5) = X(12*n+7) = -1. - Peter Bala, Mar 01 2012
a(n) ~ n^(2*n+3/2) * 2^(4*n+3) * 3^(2*n+3/2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, Mar 01 2014
From Peter Bala, May 11 2017: (Start)
Let X = 24*x. G.f. A(x) = 1/(1 + x - X/(1 - 2*X/(1 + x - 5*X/(1 - 7*X/(1 + x - 12*X/(1 - ...)))))) = 1 + 23*x + 1681*x^2 + ..., where the sequence [1, 2, 5, 7, 12, ...] of unsigned coefficients in the partial numerators of the continued fraction are generalized pentagonal numbers A001318.
A(x) = 1/(1 + 25*x - 2*X/(1 - X/(1 + 25*x - 7*X/(1 - 5*X/(1 + 25*x - 15*X/(1 - 12*X/(1 + 25*x - 26*X/(1 - 22*X/(1 + 25*x - ...))))))))), where the sequence [2, 1, 7, 5, 15, 12, 26, 22, ...] of unsigned coefficients in the partial numerators is obtained by swapping pairs of adjacent generalized pentagonal numbers.
G.f. as a J-fraction: A(x) = 1/(1 - 23*x - 2*X^2/(1 - 167*x - 5*7*X^2/(1 - 455*x - 12*15*X^2/(1 - 887*x - ...)))).
Let B(x) = 1/(1 - x)*A(x/(1 - x)), that is, B(x) is the binomial transform of A(x). Then B(x/24) is the o.g.f. for A079144. (End)
a(n) == 23^n ( mod (2^7)*(3^2) ). - Peter Bala, Dec 25 2021

Extensions

More terms from Michael Somos
Offset changed from 1 to 0 by N. J. A. Sloane, Dec 11 1999

A182824 Inverse of coefficient array for orthogonal polynomials p(n,x)=(x-(2n-1))*p(n-1,x)-(2n-2)^2*p(n-2,x).

Original entry on oeis.org

1, 1, 1, 5, 4, 1, 21, 33, 9, 1, 153, 264, 114, 16, 1, 1209, 2769, 1410, 290, 25, 1, 12285, 32076, 20259, 5040, 615, 36, 1, 140589, 432657, 314811, 94899, 14175, 1155, 49, 1, 1871217, 6475536, 5423076, 1886304, 337974, 33936, 1988, 64, 1, 27773361, 108067041, 101497860, 40257540, 8321670, 997542, 72324, 3204, 81, 1, 460041525, 1975940244, 2064827781, 915887520, 214906770, 29709288, 2565738, 141120, 4905, 100, 1
Offset: 0

Views

Author

Paul Barry, Dec 05 2010

Keywords

Comments

Inverse is the coefficient array for the orthogonal polynomials p(0,x)=1,p(1,x)=x-1,p(n,x)=(x-(2n-1))*p(n-1,x)-(2n-2)^2*p(n-2,x).
Inverse is A182826. First column is A182825.

Examples

			Triangle begins:
  1,
  1, 1,
  5, 4, 1,
  21, 33, 9, 1,
  153, 264, 114, 16, 1,
  1209, 2769, 1410, 290, 25, 1,
  12285, 32076, 20259, 5040, 615, 36, 1,
  140589, 432657, 314811, 94899, 14175, 1155, 49, 1,
  1871217, 6475536, 5423076, 1886304, 337974, 33936, 1988, 64, 1
Production matrix begins:
  1, 1,
  4, 3, 1,
  0, 16, 5, 1,
  0, 0, 36, 7, 1,
  0, 0, 0, 64, 9, 1,
  0, 0, 0, 0, 100, 11, 1,
  0, 0, 0, 0, 0, 144, 13, 1,
  0, 0, 0, 0, 0, 0, 196, 15, 1,
  0, 0, 0, 0, 0, 0, 0, 256, 17, 1
  0, 0, 0, 0, 0, 0, 0, 0, 324, 19, 1
		

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1/(Cos[Sqrt[3]*#] - Sin[Sqrt[3]*#]/Sqrt[3])&, Sin[Sqrt[3]*#]/ (Sqrt[3]*Cos[Sqrt[3]*#] - Sin[Sqrt[3]*#])&, 11, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)

Formula

Exponential Riordan array [1/(cos(sqrt(3)*x)-sin(sqrt(3)*x)/sqrt(3)), sin(sqrt(3)*x)/(sqrt(3)*cos(sqrt(3)*x)-sin(sqrt(3)*x))].

A333273 Irregular triangle read by rows: coefficients of q-Eulerian polynomials of Type B.

Original entry on oeis.org

1, 1, 4, 1, 20, 1, 72, 80, 1, 232, 976, 1, 716, 7664, 3904, 1, 2172, 49776, 88640, 1, 6544, 292320, 1217792, 354560, 1, 19664, 1618656, 13201664, 12933376, 1, 59028, 8643872, 124784768, 274820352, 51733504, 1, 177124, 45108256, 1080946304, 4469939456, 2767631360
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2020

Keywords

Comments

For Type A see A101280.

Examples

			Triangle begins:
  1;
  1,    4;
  1,   20;
  1,   72,   80;
  1,  232,  976;
  1,  716, 7664, 3904;
  ...
		

Crossrefs

Cf. A101280, A008971. Row sums are A182825.

Formula

T(n, k) = A008971(n, k) * 4^k. [Han et al.] - Andrey Zabolotskiy, Feb 15 2025

Extensions

Term T(6, 2) corrected (Table 1 in the Han et al. reference has a typo) by Robert S. Maier, Feb 15 2025
Rows 7-11 from Andrey Zabolotskiy, Mar 03 2025
Showing 1-3 of 3 results.