cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A156175 A bisection of A002439.

Original entry on oeis.org

1, 1681, 67637281, 15442193173681, 11735529528739490881, 22427641105413135505628881, 90592214447886493688036507587681, 687051872949101429716075902637226327281, 8977220765593827294384825469501847565263767681, 189320918307961834904462117789058282666933576006788881
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

A156176 A bisection of A002439.

Original entry on oeis.org

23, 257543, 27138236663, 11828536957233383, 14639678925928297567703, 41393949926819051111431239623, 231969423543894989257690172433129143, 2330640193014931063017585202490874608196263, 38966520031501064708241399303059964064529134680983, 1023409776429490887726960719866571404072100379273323303303
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

A002811 Erroneous version of A002439.

Original entry on oeis.org

1, 5, 23, 1681, 257543, 67637281, 27138236663, 15442193173681
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A000364 Euler (or secant or "Zig") numbers: e.g.f. (even powers only) sec(x) = 1/cos(x).

Original entry on oeis.org

1, 1, 5, 61, 1385, 50521, 2702765, 199360981, 19391512145, 2404879675441, 370371188237525, 69348874393137901, 15514534163557086905, 4087072509293123892361, 1252259641403629865468285, 441543893249023104553682821, 177519391579539289436664789665
Offset: 0

Views

Author

Keywords

Comments

Inverse Gudermannian gd^(-1)(x) = log(sec(x) + tan(x)) = log(tan(Pi/4 + x/2)) = arctanh(sin(x)) = 2 * arctanh(tan(x/2)) = 2 * arctanh(csc(x) - cot(x)). - Michael Somos, Mar 19 2011
a(n) is the number of downup permutations of [2n]. Example: a(2)=5 counts 4231, 4132, 3241, 3142, 2143. - David Callan, Nov 21 2011
a(n) is the number of increasing full binary trees on vertices {0,1,2,...,2n} for which the leftmost leaf is labeled 2n. - David Callan, Nov 21 2011
a(n) is the number of unordered increasing trees of size 2n+1 with only even degrees allowed and degree-weight generating function given by cosh(t). - Markus Kuba, Sep 13 2014
a(n) is the number of standard Young tableaux of skew shape (n+1,n,n-1,...,3,2)/(n-1,n-2,...2,1). - Ran Pan, Apr 10 2015
Since cos(z) has a root at z = Pi/2 and no other root in C with a smaller |z|, the radius of convergence of the e.g.f. (intended complex-valued) is Pi/2 = A019669 (see also A028296). - Stanislav Sykora, Oct 07 2016
All terms are odd. - Alois P. Heinz, Jul 22 2018
The sequence starting with a(1) is periodic modulo any odd prime p. The minimal period is (p-1)/2 if p == 1 mod 4 and p-1 if p == 3 mod 4 [Knuth & Buckholtz, 1967, Theorem 2]. - Allen Stenger, Aug 03 2020
Conjecture: taking the sequence [a(n) : n >= 1] modulo an integer k gives a purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 21 begins [1, 5, 19, 20, 16, 2, 1, 5, 19, 20, 16, 2, 1, 5, 19, 20, 16, 2, 1, 5, 19, ...] with an apparent period of 6 = phi(21)/2. - Peter Bala, May 08 2023

Examples

			G.f. = 1 + x + 5*x^2 + 61*x^3 + 1385*x^4 + 50521*x^5 + 2702765*x^6 + 199360981*x^7 + ...
sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + ...
From _Gary W. Adamson_, Jul 18 2011: (Start)
The first few rows of matrix M are:
   1,  1,  0,  0,  0, ...
   4,  4,  4,  0,  0, ...
   9,  9,  9,  9,  0, ...
  16, 16, 16, 16, 16, ... (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810; gives a version with signs: E_{2n} = (-1)^n*a(n) (this is A028296).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
  • J. M. Borwein and D. M. Bailey, Mathematics by Experiment, Peters, Boston, 2004; p. 49
  • J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 141.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 420.
  • G. Chrystal, Algebra, Vol. II, p. 342.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 49.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 110.
  • H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 69.
  • L. Euler, Inst. Calc. Diff., Section 224.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
  • L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 5 and 33, pages 41, 314.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 269.

Crossrefs

Essentially same as A028296 and A122045.
First column of triangle A060074.
Two main diagonals of triangle A060058 (as iterated sums of squares).
Absolute values of row sums of A160485. - Johannes W. Meijer, Jul 06 2009
Left edge of triangle A210108, see also A125053, A076552. Cf. A255881.
Bisection (even part) of A317139.
The sequences [(-k^2)^n*Euler(2*n, 1/k), n = 0, 1, ...] are: A000007 (k=1), A000364 (k=2), |A210657| (k=3), A000281 (k=4), A272158 (k=5), A002438 (k=6), A273031 (k=7).

Programs

  • Maple
    series(sec(x),x,40): SERIESTOSERIESMULT(%): subs(x=sqrt(y),%): seriestolist(%);
    # end of program
    A000364_list := proc(n) local S,k,j; S[0] := 1;
    for k from 1 to n do S[k] := k*S[k-1] od;
    for k from  1 to n do
        for j from k to n do
            S[j] := (j-k)*S[j-1]+(j-k+1)*S[j] od od;
    seq(S[j], j=1..n)  end:
    A000364_list(16);  # Peter Luschny, Apr 02 2012
    A000364 := proc(n)
        abs(euler(2*n)) ;
    end proc: # R. J. Mathar, Mar 14 2013
  • Mathematica
    Take[ Range[0, 32]! * CoefficientList[ Series[ Sec[x], {x, 0, 32}], x], {1, 32, 2}] (* Robert G. Wilson v, Apr 23 2006 *)
    Table[Abs[EulerE[2n]], {n, 0, 30}] (* Ray Chandler, Mar 20 2007 *)
    a[ n_] := If[ n < 0, 0, With[{m = 2 n}, m! SeriesCoefficient[ Sec[ x], {x, 0, m}]]]; (* Michael Somos, Nov 22 2013 *)
    a[ n_] := If[ n < 0, 0, With[{m = 2 n + 1}, m! SeriesCoefficient[ InverseGudermannian[ x], {x, 0, m}]]]; (* Michael Somos, Nov 22 2013 *)
    a[n_] := Sum[Sum[Binomial[k, m] (-1)^(n+k)/(2^(m-1)) Sum[Binomial[m, j]* (2j-m)^(2n), {j, 0, m/2}] (-1)^(k-m), {m, 0, k}], {k, 1, 2n}]; Table[ a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 26 2019, after Vladimir Kruchinin *)
    a[0] := 1; a[n_] := a[n] = -Sum[a[n - k]/(2 k)!, {k, 1, n}]; Map[(-1)^# (2 #)! a[#] &, Range[0, 16]] (* Oliver Seipel, May 18 2024 *)
  • Maxima
    a(n):=sum(sum(binomial(k,m)*(-1)^(n+k)/(2^(m-1))*sum(binomial(m,j)*(2*j-m)^(2*n),j,0,m/2)*(-1)^(k-m),m,0,k),k,1,2*n); /* Vladimir Kruchinin, Aug 05 2010 */
    
  • Maxima
    a[n]:=if n=0 then 1 else sum(sum((i-k)^(2*n)*binomial(2*k, i)*(-1)^(i+k+n), i, 0, k-1)/ (2^(k-1)), k, 1, 2*n); makelist(a[n], n, 0, 16); /* Vladimir Kruchinin, Oct 05 2012 */
    
  • PARI
    {a(n)=local(CF=1+x*O(x^n));if(n<0,return(0), for(k=1,n,CF=1/(1-(n-k+1)^2*x*CF));return(Vec(CF)[n+1]))} \\ Paul D. Hanna Oct 07 2005
    
  • PARI
    {a(n) = if( n<0, 0, (2*n)! * polcoeff( 1 / cos(x + O(x^(2*n + 1))), 2*n))}; /* Michael Somos, Jun 18 2002 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n = 2*n+1 ; A = x * O(x^n); n! * polcoeff( log(1 / cos(x + A) + tan(x + A)), n))}; /* Michael Somos, Aug 15 2007 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (2*m)!/2^m * x^m/prod(k=1, m, 1+k^2*x+x*O(x^n))), n)} \\ Paul D. Hanna, Sep 20 2012
    
  • PARI
    list(n)=my(v=Vec(1/cos(x+O(x^(2*n+1)))));vector(n,i,v[2*i-1]*(2*i-2)!) \\ Charles R Greathouse IV, Oct 16 2012
    
  • PARI
    a(n)=subst(bernpol(2*n+1),'x,1/4)*4^(2*n+1)*(-1)^(n+1)/(2*n+1) \\ Charles R Greathouse IV, Dec 10 2014
    
  • PARI
    a(n)=abs(eulerfrac(2*n)) \\ Charles R Greathouse IV, Mar 23 2022
    
  • PARI
    \\ Based on an algorithm of Peter Bala, cf. link in A110501.
    upto(n) = my(v1, v2, v3); v1 = vector(n+1, i, 0); v1[1] = 1; v2 = vector(n, i, i^2); v3 = v1; for(i=2, n+1, for(j=2, i-1, v1[j] += v2[i-j+1]*v1[j-1]); v1[i] = v1[i-1]; v3[i] = v1[i]); v3 \\ Mikhail Kurkov, Aug 30 2025
    
  • Python
    from functools import lru_cache
    from math import comb
    @lru_cache(maxsize=None)
    def A000364(n): return 1 if n == 0 else (1 if n % 2 else -1)*sum((-1 if i % 2 else 1)*A000364(i)*comb(2*n,2*i) for i in range(n)) # Chai Wah Wu, Jan 14 2022
    
  • Python
    # after Mikhail Kurkov, based on an algorithm of Peter Bala, cf. link in A110501.
    def euler_list(len: int) -> list[int]:
        if len == 0: return []
        v1 = [1] + [0] * (len - 1)
        v2 = [i**2 for i in range(1, len + 1)]
        result = [0] * len
        result[0] = 1
        for i in range(1, len):
            for j in range(1, i):
                v1[j] += v2[i - j] * v1[j - 1]
            v1[i] = v1[i - 1]
            result[i] = v1[i]
        return result
    print(euler_list(1000))  # Peter Luschny, Aug 30 2025
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(0), a(1), ..., a(n-1)] for n > 0.
    def A000364_list(len) :
        R = []; A = {-1:0, 0:1}; k = 0; e = 1
        for i in (0..2*len-1) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            if e < 0 : R.append(A[-i//2])
        return R
    A000364_list(17) # Peter Luschny, Mar 31 2012
    

Formula

E.g.f.: Sum_{n >= 0} a(n) * x^(2*n) / (2*n)! = sec(x). - Michael Somos, Aug 15 2007
E.g.f.: Sum_{n >= 0} a(n) * x^(2*n+1) / (2*n+1)! = gd^(-1)(x). - Michael Somos, Aug 15 2007
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n+1)/(2*n+1)! = 2*arctanh(cosec(x)-cotan(x)). - Ralf Stephan, Dec 16 2004
Pi/4 - [Sum_{k=0..n-1} (-1)^k/(2*k+1)] ~ (1/2)*[Sum_{k>=0} (-1)^k*E(k)/(2*n)^(2k+1)] for positive even n. [Borwein, Borwein, and Dilcher]
Also, for positive odd n, log(2) - Sum_{k = 1..(n-1)/2} (-1)^(k-1)/k ~ (-1)^((n-1)/2) * Sum_{k >= 0} (-1)^k*E(k)/n^(2*k+1), where E(k) is the k-th Euler number, by Borwein, Borwein, and Dilcher, Lemma 2 with f(x) := 1/(x + 1/2), h := 1/2 and then replace x with (n-1)/2. - Peter Bala, Oct 29 2016
Let M_n be the n X n matrix M_n(i, j) = binomial(2*i, 2*(j-1)) = A086645(i, j-1); then for n>0, a(n) = det(M_n); example: det([1, 1, 0, 0; 1, 6, 1, 0; 1, 15, 15, 1; 1, 28, 70, 28 ]) = 1385. - Philippe Deléham, Sep 04 2005
This sequence is also (-1)^n*EulerE(2*n) or abs(EulerE(2*n)). - Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 14 2006
a(n) = 2^n * E_n(1/2), where E_n(x) is an Euler polynomial.
a(k) = a(j) (mod 2^n) if and only if k == j (mod 2^n) (k and j are even). [Stern; see also Wagstaff and Sun]
E_k(3^(k+1)+1)/4 = (3^k/2)*Sum_{j=0..2^n-1} (-1)^(j-1)*(2j+1)^k*[(3j+1)/2^n] (mod 2^n) where k is even and [x] is the greatest integer function. [Sun]
a(n) ~ 2^(2*n+2)*(2*n)!/Pi^(2*n+1) as n -> infinity. [corrected by Vaclav Kotesovec, Jul 10 2021]
a(n) = Sum_{k=0..n} A094665(n, k)*2^(n-k). - Philippe Deléham, Jun 10 2004
Recurrence: a(n) = -(-1)^n*Sum_{i=0..n-1} (-1)^i*a(i)*binomial(2*n, 2*i). - Ralf Stephan, Feb 24 2005
O.g.f.: 1/(1-x/(1-4*x/(1-9*x/(1-16*x/(...-n^2*x/(1-...)))))) (continued fraction due to T. J. Stieltjes). - Paul D. Hanna, Oct 07 2005
a(n) = (Integral_{t=0..Pi} log(tan(t/2)^2)^(2n)dt)/Pi^(2n+1). - Logan Kleinwaks (kleinwaks(AT)alumni.princeton.edu), Mar 15 2007
From Peter Bala, Mar 24 2009: (Start)
Basic hypergeometric generating function: 2*exp(-t)*Sum {n >= 0} Product_{k = 1..n} (1-exp(-(4*k-2)*t))*exp(-2*n*t)/Product_{k = 1..n+1} (1+exp(-(4*k-2)*t)) = 1 + t + 5*t^2/2! + 61*t^3/3! + .... For other sequences with generating functions of a similar type see A000464, A002105, A002439, A079144 and A158690.
a(n) = 2*(-1)^n*L(-2*n), where L(s) is the Dirichlet L-function L(s) = 1 - 1/3^s + 1/5^s - + .... (End)
Sum_{n>=0} a(n)*z^(2*n)/(4*n)!! = Beta(1/2-z/(2*Pi),1/2+z/(2*Pi))/Beta(1/2,1/2) with Beta(z,w) the Beta function. - Johannes W. Meijer, Jul 06 2009
a(n) = Sum_(Sum_(binomial(k,m)*(-1)^(n+k)/(2^(m-1))*Sum_(binomial(m,j)*(2*j-m)^(2*n),j,0,m/2)*(-1)^(k-m),m,0,k),k,1,2*n), n>0. - Vladimir Kruchinin, Aug 05 2010
If n is prime, then a(n)==1 (mod 2*n). - Vladimir Shevelev, Sep 04 2010
From Peter Bala, Jan 21 2011: (Start)
(1)... a(n) = (-1/4)^n*B(2*n,-1),
where {B(n,x)}n>=1 = [1, 1+x, 1+6*x+x^2, 1+23*x+23*x^2+x^3, ...] is the sequence of Eulerian polynomials of type B - see A060187. Equivalently,
(2)... a(n) = Sum_{k = 0..2*n} Sum_{j = 0..k} (-1)^(n-j) *binomial(2*n+1,k-j)*(j+1/2)^(2*n).
We also have
(3)... a(n) = 2*A(2*n,i)/(1+i)^(2*n+1),
where i = sqrt(-1) and where {A(n,x)}n>=1 = [x, x + x^2, x + 4*x^2 + x^3, ...] denotes the sequence of Eulerian polynomials - see A008292. Equivalently,
(4)... a(n) = i*Sum_{k = 1..2*n} (-1)^(n+k)*k!*Stirling2(2*n,k) *((1+i)/2)^(k-1)
= i*Sum_{k = 1..2*n} (-1)^(n+k)*((1+i)/2)^(k-1) Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^(2*n).
Either this explicit formula for a(n) or (2) above may be used to obtain congruence results for a(n). For example, for prime p
(5a)... a(p) = 1 (mod p)
(5b)... a(2*p) = 5 (mod p)
and for odd prime p
(6a)... a((p+1)/2) = (-1)^((p-1)/2) (mod p)
(6b)... a((p-1)/2) = -1 + (-1)^((p-1)/2) (mod p).
(End)
a(n) = (-1)^n*2^(4*n+1)*(zeta(-2*n,1/4) - zeta(-2*n,3/4)). - Gerry Martens, May 27 2011
a(n) may be expressed as a sum of multinomials taken over all compositions of 2*n into even parts (Vella 2008): a(n) = Sum_{compositions 2*i_1 + ... + 2*i_k = 2*n} (-1)^(n+k)* multinomial(2*n, 2*i_1, ..., 2*i_k). For example, there are 4 compositions of the number 6 into even parts, namely 6, 4+2, 2+4 and 2+2+2, and hence a(3) = 6!/6! - 6!/(4!*2!) - 6!/(2!*4!) + 6!/(2!*2!*2!) = 61. A companion formula expressing a(n) as a sum of multinomials taken over the compositions of 2*n-1 into odd parts has been given by Malenfant 2011. - Peter Bala, Jul 07 2011
a(n) = the upper left term in M^n, where M is an infinite square production matrix; M[i,j] = A000290(i) = i^2, i >= 1 and 1 <= j <= i+1, and M[i,j] = 0, i >= 1 and j >= i+2 (see examples). - Gary W. Adamson, Jul 18 2011
E.g.f. A'(x) satisfies the differential equation A'(x)=cos(A(x)). - Vladimir Kruchinin, Nov 03 2011
From Peter Bala, Nov 28 2011: (Start)
a(n) = D^(2*n)(cosh(x)) evaluated at x = 0, where D is the operator cosh(x)*d/dx. a(n) = D^(2*n-1)(f(x)) evaluated at x = 0, where f(x) = 1+x+x^2/2! and D is the operator f(x)*d/dx.
Other generating functions: cosh(Integral_{t = 0..x} 1/cos(t)) dt = 1 + x^2/2! + 5*x^4/4! + 61*x^6/6! + 1385*x^8/8! + .... Cf. A012131.
A(x) := arcsinh(tan(x)) = log( sec(x) + tan(x) ) = x + x^3/3! + 5*x^5/5! + 61*x^7/7! + 1385*x^9/9! + .... A(x) satisfies A'(x) = cosh(A(x)).
B(x) := Series reversion( log(sec(x) + tan(x)) ) = x - x^3/3! + 5*x^5/5! - 61*x^7/7! + 1385*x^9/9! - ... = arctan(sinh(x)). B(x) satisfies B'(x) = cos(B(x)). (End)
HANKEL transform is A097476. PSUM transform is A173226. - Michael Somos, May 12 2012
a(n+1) - a(n) = A006212(2*n). - Michael Somos, May 12 2012
a(0) = 1 and, for n > 0, a(n) = (-1)^n*((4*n+1)/(2*n+1) - Sum_{k = 1..n} (4^(2*k)/2*k)*binomial(2*n,2*k-1)*A000367(k)/A002445(k)); see the Bucur et al. link. - L. Edson Jeffery, Sep 17 2012
O.g.f.: Sum_{n>=0} (2*n)!/2^n * x^n / Product_{k=1..n} (1 + k^2*x). - Paul D. Hanna, Sep 20 2012
From Sergei N. Gladkovskii, Oct 31 2011 to Oct 11 2013: (Start)
Continued fractions:
E.g.f.: (sec(x)) = 1+x^2/T(0), T(k) = 2(k+1)(2k+1) - x^2 + x^2*(2k+1)(2k+2)/T(k+1).
E.g.f.: 2/Q(0) where Q(k) = 1 + 1/(1 - x^2/(x^2 - 2*(k+1)*(2*k+1)/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + x*k*(3*k-1) - x*(k+1)*(2*k+1)*(x*k^2+1)/Q(k+1).
E.g.f.: (2 + x^2 + 2*U(0))/(2 + (2 - x^2)*U(0)) where U(k)= 4*k + 4 + 1/( 1 + x^2/(2 - x^2 + (2*k+3)*(2*k+4)/U(k+1))).
E.g.f.: 1/cos(x) = 8*(x^2+1)/(4*x^2 + 8 - x^4*U(0)) where U(k) = 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 - 8*(k+1)*(k+2)*(k+3)/U(k+1))).
G.f.: 1/U(0) where U(k) = 1 + x - x*(2*k+1)*(2*k+2)/(1 - x*(2*k+1)*(2*k+2)/U(k+1)).
G.f.: 1 + x/G(0) where G(k) = 1 + x - x*(2*k+2)*(2*k+3)/(1 - x*(2*k+2)*(2*k+3)/G(k+1)).
Let F(x) = sec(x^(1/2)) = Sum_{n>=0} a(n)*x^n/(2*n)!, then F(x)=2/(Q(0) + 1) where Q(k)= 1 - x/(2*k+1)/(2*k+2)/(1 - 1/(1 + 1/Q(k+1))).
G.f.: Q(0), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 - 1/Q(k+1)).
E.g.f.: 1/cos(x) = 1 + x^2/(2-x^2)*Q(0), where Q(k) = 1 - 2*x^2*(k+1)*(2*k+1)/( 2*x^2*(k+1)*(2*k+1)+ (12-x^2 + 14*k + 4*k^2)*(2-x^2 + 6*k + 4*k^2)/Q(k+1)). (End)
a(n) = Sum_{k=1..2*n} (Sum_{i=0..k-1} (i-k)^(2*n)*binomial(2*k,i)*(-1)^(i+k+n)) / 2^(k-1) for n>0, a(0)=1. - Vladimir Kruchinin, Oct 05 2012
It appears that a(n) = 3*A076552(n -1) + 2*(-1)^n for n >= 1. Conjectural congruences: a(2*n) == 5 (mod 60) for n >= 1 and a(2*n+1) == 1 (mod 60) for n >= 0. - Peter Bala, Jul 26 2013
From Peter Bala, Mar 09 2015: (Start)
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - sqrt(-x)*(2*k + 1)) = Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 + x*(2*k + 1)^2).
O.g.f. is 1 + x*d/dx(log(F(x))), where F(x) = 1 + x + 3*x^2 + 23*x^3 + 371*x^4 + ... is the o.g.f. for A255881. (End)
Sum_(n >= 1, A034947(n)/n^(2d+1)) = a(d)*Pi^(2d+1)/(2^(2d+2)-2)(2d)! for d >= 0; see Allouche and Sondow, 2015. - Jonathan Sondow, Mar 21 2015
Asymptotic expansion: 4*(4*n/(Pi*e))^(2*n+1/2)*exp(1/2+1/(24*n)-1/(2880*n^3) +1/(40320*n^5)-...). (See the Luschny link.) - Peter Luschny, Jul 14 2015
a(n) = 2*(-1)^n*Im(Li_{-2n}(i)), where Li_n(x) is polylogarithm, i=sqrt(-1). - Vladimir Reshetnikov, Oct 22 2015
Limit_{n->infinity} ((2*n)!/a(n))^(1/(2*n)) = Pi/2. - Stanislav Sykora, Oct 07 2016
O.g.f.: 1/(1 + x - 2*x/(1 - 2*x/(1 + x - 12*x/(1 - 12*x/(1 + x - 30*x/(1 - 30*x/(1 + x - ... - (2*n - 1)*(2*n)*x/(1 - (2*n - 1)*(2*n)*x/(1 + x - ... ))))))))). - Peter Bala, Nov 09 2017
For n>0, a(n) = (-PolyGamma(2*n, 1/4) / 2^(2*n - 1) - (2^(2*n + 2) - 2) * Gamma(2*n + 1) * zeta(2*n + 1)) / Pi^(2*n + 1). - Vaclav Kotesovec, May 04 2020
a(n) ~ 2^(4*n + 3) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)) * exp(Sum_{k>=1} bernoulli(k+1) / (k*(k+1)*2^k*n^k)). - Vaclav Kotesovec, Mar 05 2021
Peter Bala's conjectured congruences, a(2n) == 5 (mod 60) for n >= 1 and a(2n + 1) == 1 (mod 60), hold due to the results of Stern (mod 4) and Knuth & Buckholtz (mod 3 and 5). - Charles R Greathouse IV, Mar 23 2022

Extensions

Typo in name corrected by Anders Claesson, Dec 01 2015

A000295 Eulerian numbers (Euler's triangle: column k=2 of A008292, column k=1 of A173018).

Original entry on oeis.org

0, 0, 1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519, 131054, 262125, 524268, 1048555, 2097130, 4194281, 8388584, 16777191, 33554406, 67108837, 134217700, 268435427, 536870882, 1073741793, 2147483616, 4294967263, 8589934558
Offset: 0

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of Dyck paths of semilength n having exactly one long ascent (i.e., ascent of length at least two). Example: a(4)=11 because among the 14 Dyck paths of semilength 4, the paths that do not have exactly one long ascent are UDUDUDUD (no long ascent), UUDDUUDD and UUDUUDDD (two long ascents). Here U=(1,1) and D=(1,-1). Also number of ordered trees with n edges having exactly one branch node (i.e., vertex of outdegree at least two). - Emeric Deutsch, Feb 22 2004
Number of permutations of {1,2,...,n} with exactly one descent (i.e., permutations (p(1),p(2),...,p(n)) such that #{i: p(i)>p(i+1)}=1). E.g., a(3)=4 because the permutations of {1,2,3} with one descent are 132, 213, 231 and 312.
a(n+1) is the convolution of nonnegative integers (A001477) and powers of two (A000079). - Graeme McRae, Jun 07 2006
Partial sum of main diagonal of A125127. - Jonathan Vos Post, Nov 22 2006
Number of partitions of an n-set having exactly one block of size > 1. Example: a(4)=11 because, if the partitioned set is {1,2,3,4}, then we have 1234, 123|4, 124|3, 134|2, 1|234, 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34. - Emeric Deutsch, Oct 28 2006
k divides a(k+1) for k in A014741. - Alexander Adamchuk, Nov 03 2006
(Number of permutations avoiding patterns 321, 2413, 3412, 21534) minus one. - Jean-Luc Baril, Nov 01 2007, Mar 21 2008
The chromatic invariant of the prism graph P_n for n >= 3. - Jonathan Vos Post, Aug 29 2008
Decimal integer corresponding to the result of XORing the binary representation of 2^n - 1 and the binary representation of n with leading zeros. This sequence and a few others are syntactically similar. For n > 0, let D(n) denote the decimal integer corresponding to the binary number having n consecutive 1's. Then D(n).OP.n represents the n-th term of a sequence when .OP. stands for a binary operator such as '+', '-', '*', 'quotentof', 'mod', 'choose'. We then get the various sequences A136556, A082495, A082482, A066524, A000295, A052944. Another syntactically similar sequence results when we take the n-th term as f(D(n)).OP.f(n). For example if f='factorial' and .OP.='/', we get (A136556)(A000295) ; if f='squaring' and .OP.='-', we get (A000295)(A052944). - K.V.Iyer, Mar 30 2009
Chromatic invariant of the prism graph Y_n.
Number of labelings of a full binary tree of height n-1, such that each path from root to any leaf contains each label from {1,2,...,n-1} exactly once. - Michael Vielhaber (vielhaber(AT)gmail.com), Nov 18 2009
Also number of nontrivial equivalence classes generated by the weak associative law X((YZ)T)=(X(YZ))T on words with n open and n closed parentheses. Also the number of join (resp. meet)-irreducible elements in the pruning-grafting lattice of binary trees with n leaves. - Jean Pallo, Jan 08 2010
Nonzero terms of this sequence can be found from the row sums of the third sub-triangle extracted from Pascal's triangle as indicated below by braces:
1;
1, 1;
{1}, 2, 1;
{1, 3}, 3, 1;
{1, 4, 6}, 4, 1;
{1, 5, 10, 10}, 5, 1;
{1, 6, 15, 20, 15}, 6, 1;
... - L. Edson Jeffery, Dec 28 2011
For integers a, b, denote by a<+>b the least c >= a, such that the Hamming distance D(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then for n >= 3, a(n) = n<+>n. This has a simple explanation: for n >= 3 in binary we have a(n) = (2^n-1)-n = "anti n". - Vladimir Shevelev, Feb 14 2012
a(n) is the number of binary sequences of length n having at least one pair 01. - Branko Curgus, May 23 2012
Nonzero terms are those integers k for which there exists a perfect (Hamming) error-correcting code. - L. Edson Jeffery, Nov 28 2012
a(n) is the number of length n binary words constructed in the following manner: Select two positions in which to place the first two 0's of the word. Fill in all (possibly none) of the positions before the second 0 with 1's and then complete the word with an arbitrary string of 0's or 1's. So a(n) = Sum_{k=2..n} (k-1)*2^(n-k). - Geoffrey Critzer, Dec 12 2013
Without first 0: a(n)/2^n equals Sum_{k=0..n} k/2^k. For example: a(5)=57, 57/32 = 0/1 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32. - Bob Selcoe, Feb 25 2014
The first barycentric coordinate of the centroid of the first n rows of Pascal's triangle, assuming the numbers are weights, is A000295(n+1)/A000337(n). See attached figure. - César Eliud Lozada, Nov 14 2014
Starting (0, 1, 4, 11, ...), this is the binomial transform of (0, 1, 2, 2, 2, ...). - Gary W. Adamson, Jul 27 2015
Also the number of (non-null) connected induced subgraphs in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Aug 27 2017
a(n) is the number of swaps needed in the worst case to transform a binary tree with n full levels into a heap, using (bottom-up) heapify. - Rudy van Vliet, Sep 19 2017
The utility of large networks, particularly social networks, with n participants is given by the terms a(n) of this sequence. This assertion is known as Reed's Law, see the Wikipedia link. - Johannes W. Meijer, Jun 03 2019
a(n-1) is the number of subsets of {1..n} in which the largest element of the set exceeds by at least 2 the next largest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,2,4}, {1,2,5}, {1,3,5}, {2,3,5}, {1,2,3,5}. - Enrique Navarrete, Apr 08 2020
a(n-1) is also the number of subsets of {1..n} in which the second smallest element of the set exceeds by at least 2 the smallest element. For example, for n = 5, a(4) = 11 and the 11 sets are {1,3}, {1,4}, {1,5}, {2,4}, {2,5}, {3,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,4,5}, {1,3,4,5}. - Enrique Navarrete, Apr 09 2020
a(n+1) is the sum of the smallest elements of all subsets of {1..n}. For example, for n=3, a(4)=11; the subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 11. - Enrique Navarrete, Aug 20 2020
Number of subsets of an n-set that have more than one element. - Eric M. Schmidt, Mar 13 2021
Number of individual bets in a "full cover" bet on n-1 horses, dogs, etc. in different races. Each horse, etc. can be bet on or not, giving 2^n bets. But, by convention, singles (a bet on only one race) are not included, reducing the total number bets by n. It is also impossible to bet on no horses at all, reducing the number of bets by another 1. A full cover on 4 horses, dogs, etc. is therefore 6 doubles, 4 trebles and 1 four-horse etc. accumulator. In British betting, such a bet on 4 horses etc. is a Yankee; on 5, a super-Yankee. - Paul Duckett, Nov 17 2021
From Enrique Navarrete, May 25 2022: (Start)
Number of binary sequences of length n with at least two 1's.
a(n-1) is the number of ways to choose an odd number of elements greater than or equal to 3 out of n elements.
a(n+1) is the number of ways to split [n] = {1,2,...,n} into two (possibly empty) complementary intervals {1,2,...,i} and {i+1,i+2,...,n} and then select a subset from the first interval (2^i choices, 0 <= i <= n), and one block/cell (i.e., subinterval) from the second interval (n-i choices, 0 <= i <= n).
(End)
Number of possible conjunctions in a system of n planets; for example, there can be 0 conjunctions with one planet, one with two planets, four with three planets (three pairs of planets plus one with all three) and so on. - Wendy Appleby, Jan 02 2023
Largest exponent m such that 2^m divides (2^n-1)!. - Franz Vrabec, Aug 18 2023
It seems that a(n-1) is the number of odd r with 0 < r < 2^n for which there exist u,v,w in the x-independent beginning of the Collatz trajectory of 2^n x + r with u+v = w+1, as detailed in the link "Collatz iteration and Euler numbers?". A better understanding of this might also give a formula for A374527. - Markus Sigg, Aug 02 2024
This sequence has a connection to consecutively halved positional voting (CHPV); see Mendenhall and Switkay. - Hal M. Switkay, Feb 25 2025
a(n) is the number of subsets of size 2 and more of an n-element set. Equivalently, a(n) is the number of (hyper)edges of size 2 and more in a complete hypergraph of n vertices. - Yigit Oktar, Apr 05 2025

Examples

			G.f. = x^2 + 4*x^3 + 11*x^4 + 26*x^5 + 57*x^6 + 120*x^7 + 247*x^8 + 502*x^9 + ...
		

References

  • O. Bottema, Problem #562, Nieuw Archief voor Wiskunde, 28 (1980) 115.
  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." Section 6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 34.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A002662 (partial sums).
Partial sums of A000225.
Row sums of A014473 and of A143291.
Second column of triangles A112493 and A112500.
Sequences A125128 and A130103 are essentially the same.
Column k=1 of A124324.

Programs

  • Haskell
    a000295 n = 2^n - n - 1  -- Reinhard Zumkeller, Nov 25 2013
    
  • Magma
    [2^n-n-1: n in [0..40]]; // Vincenzo Librandi, Jul 29 2015
    
  • Magma
    [EulerianNumber(n, 1): n in [0..40]]; // G. C. Greubel, Oct 02 2024
    
  • Maple
    [ seq(2^n-n-1, n=1..50) ];
    A000295 := -z/(2*z-1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
    # Grammar specification:
    spec := [S, { B = Set(Z, 1 <= card), C = Sequence(B, 2 <= card), S = Prod(B, C) }, unlabeled]:
    struct := n -> combstruct[count](spec, size = n+1);
    seq(struct(n), n = 0..33); # Peter Luschny, Jul 22 2014
  • Mathematica
    a[n_] = If[n==0, 0, n*(HypergeometricPFQ[{1, 1-n}, {2}, -1] - 1)];
    Table[a[n], {n,0,40}] (* Olivier Gérard, Mar 29 2011 *)
    LinearRecurrence[{4, -5, 2}, {0, 0, 1}, 40] (* Vincenzo Librandi, Jul 29 2015 *)
    Table[2^n -n-1, {n,0,40}] (* Eric W. Weisstein, Nov 16 2017 *)
  • PARI
    a(n)=2^n-n-1 \\ Charles R Greathouse IV, Jun 10 2011
    
  • SageMath
    [2^n -(n+1) for n in range(41)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = 2^n - n - 1.
G.f.: x^2/((1-2*x)*(1-x)^2).
A107907(a(n+2)) = A000079(n+2). - Reinhard Zumkeller, May 28 2005
E.g.f.: exp(x)*(exp(x)-1-x). - Emeric Deutsch, Oct 28 2006
a(0)=0, a(1)=0, a(n) = 3*a(n-1) - 2*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(0)=0, a(n) = 2*a(n-1) + n - 1 for all n in Z.
a(n) = Sum_{k=2..n} binomial(n, k). - Paul Barry, Jun 05 2003
a(n+1) = Sum_{i=1..n} Sum_{j=1..i} C(i, j). - Benoit Cloitre, Sep 07 2003
a(n+1) = 2^n*Sum_{k=0..n} k/2^k. - Benoit Cloitre, Oct 26 2003
a(0)=0, a(1)=0, a(n) = Sum_{i=0..n-1} i+a(i) for i > 1. - Gerald McGarvey, Jun 12 2004
a(n+1) = Sum_{k=0..n} (n-k)*2^k. - Paul Barry, Jul 29 2004
a(n) = Sum_{k=0..n} binomial(n, k+2); a(n+2) = Sum_{k=0..n} binomial(n+2, k+2). - Paul Barry, Aug 23 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k+1)*2^(n-k-2)*(-1/2)^k. - Paul Barry, Oct 25 2004
a(0) = 0; a(n) = Stirling2(n,2) + a(n-1) = A000225(n-1) + a(n-1). - Thomas Wieder, Feb 18 2007
a(n) = A000325(n) - 1. - Jonathan Vos Post, Aug 29 2008
a(0) = 0, a(n) = Sum_{k=0..n-1} 2^k - 1. - Doug Bell, Jan 19 2009
a(n) = A000217(n-1) + A002662(n) for n>0. - Geoffrey Critzer, Feb 11 2009
a(n) = A000225(n) - n. - Zerinvary Lajos, May 29 2009
a(n) = n*(2F1([1,1-n],[2],-1) - 1). - Olivier Gérard, Mar 29 2011
Column k=1 of A173018 starts a'(n) = 0, 1, 4, 11, ... and has the hypergeometric representation n*hypergeom([1, -n+1], [-n], 2). This can be seen as a formal argument to prefer Euler's A173018 over A008292. - Peter Luschny, Sep 19 2014
E.g.f.: exp(x)*(exp(x)-1-x); this is U(0) where U(k) = 1 - x/(2^k - 2^k/(x + 1 - x^2*2^(k+1)/(x*2^(k+1) - (k+1)/U(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n) = A079583(n) - A000225(n+1). - Miquel Cerda, Dec 25 2016
a(0) = 0; a(1) = 0; for n > 1: a(n) = Sum_{i=1..2^(n-1)-1} A001511(i). - David Siegers, Feb 26 2019
a(n) = A007814(A028366(n)). - Franz Vrabec, Aug 18 2023
a(n) = Sum_{k=1..floor((n+1)/2)} binomial(n+1, 2*k+1). - Taras Goy, Jan 02 2025

A002105 Reduced tangent numbers: 2^n*(2^{2n} - 1)*|B_{2n}|/n, where B_n = Bernoulli numbers.

Original entry on oeis.org

1, 1, 4, 34, 496, 11056, 349504, 14873104, 819786496, 56814228736, 4835447317504, 495812444583424, 60283564499562496, 8575634961418940416, 1411083019275488149504, 265929039218907754399744, 56906245479134057176170496, 13722623393637762299131396096, 3704005473270641755597685653504
Offset: 1

Views

Author

Keywords

Comments

Comments from R. L. Graham, Apr 25 2006 and Jun 08 2006: "This sequence also gives the number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that the first token is a 1 and between every pair of tokens labeled i (i=1..n-1) there is exactly one token labeled i+1.
"For example, for n=3, there are 4 possibilities: 123123, 121323, 132312 and 132132 and indeed a(3) = 4. This is the work of my Ph. D. student Nan Zang. See also A117513, A117514, A117515.
"Develin and Sullivant give another occurrence of this sequence and show that their numbers have the same generating function, although they were unable to find a 1-1-mapping between their problem and Poupard's."
The sequence 1,0,1,0,4,0,34,0,496,0,11056, ... counts increasing complete binary trees with e.g.f. sec^2(x/sqrt 2). - Wenjin Woan, Oct 03 2007
a(n) = number of increasing full binary trees on vertex set [2n-1] with the left-largest property: the largest descendant of each non-leaf vertex occurs in its left subtree (Poupard). The first Mathematica recurrence below counts these trees by number 2k-1 of vertices in the left subtree of the root: the root is necessarily labeled 1 and n necessarily occurs in the left subtree and so there are Binomial[2n-3,2k-2] ways to choose the remaining labels for the left subtree. - David Callan, Nov 29 2007
Number of bilabeled unordered increasing trees with 2n labels. - Markus Kuba, Nov 18 2014
Conjecture: taking the sequence modulo an integer k gives an eventually purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 10 begins [1, 1, 4, 4, 6, 6, 4, 4, 6, 6, 4, 4, 6, 6, ...] with an apparent period [4, 4, 6, 6] of length 4 = phi(10) beginning at a(3). - Peter Bala, May 08 2023
Let c(1), c(2), c(3), ... be a geometric progression and s = (2*c(1)/c(2))^(1/2). Then c(1)*s*tan(x/s) = Sum_{n>0} a(n) * c(n) * x^(2*n-1) / (2*n-1)!. - Michael Somos, Jan 15 2025

Examples

			G.f. = x + x^2 + 4*x^3 + 34*x^4 + 496*x^5 + 11056*x^6 + 349504*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A008301.
Left edge of triangle A210108.

Programs

  • Magma
    A002105:= func< n | (-1)^(n+1)*2^n*(4^n - 1)*Bernoulli(2*n)/n >;
    [A002105(n): n in [1..30]]; // G. C. Greubel, Sep 20 2024
  • Maple
    S := proc(n, k) option remember; if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end: A002105 := n -> S(2*n-1, 2*n-1)/2^(n-1): seq(A002105(i),i=1..16); # Peter Luschny, Jul 08 2012
    # The above function written as a formula: a(n) = A008281(2*n-1, 2*n-1)/2^(n-1).
    # Alternatively, based on the triangular numbers A000217:
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else
    A000217(n - k + 1) * T(n, k - 1) + T(n - 1, k) fi fi end:
    a := n -> T(n, n): seq(a(n), n = 0..18);  # Peter Luschny, Sep 30 2023
  • Mathematica
    u[1] = 1; u[n_]/;n>=2 := u[n] = Sum[Binomial[2n-3,2k-2]u[k]u[n-k],{k,n-1}]; Table[u[n],{n,8}] (* Poupard and also Develin and Sullivant, give a different recurrence that involves a symmetric sum: v[1] = 1; v[n_]/;n>=2 := v[n] = 1/2 Sum[Binomial[2n-2,2k-1]v[k]v[n-k],{k,n-1}] *) (*David Callan, Nov 29 2007 *)
    a[n_] := (-1)^n 2^(n+1) PolyLog[1-2n, -1]; Array[a, 10] (* Vladimir Reshetnikov, Jan 23 2011 *)
    Table[(-1)^(n+1)*2^n*(2^(2n)-1)*BernoulliB[2n]/n,{n,1,20}] (* Vaclav Kotesovec, Nov 03 2014 *)
    eulerCF[f_, len_] := Module[{g}, g[len-1]=1; g[k_]:=g[k]=1-f[k]/(f[k]-1/g[k+1]); CoefficientList[g[0] + O[x]^len, x]]; A002105List[len_] := eulerCF[(1/2) x (#+1) (#+2)&, len]; A002105List[19] (* Peter Luschny, Aug 08 2015 after Sergei N. Gladkovskii *)
    Table[PolyGamma[2n-1, 1/2] 2^(2-n)/Pi^(2n), {n, 1, 10}] (* Vladimir Reshetnikov, Oct 18 2015 *)
    Table[EulerE[2n-1, 0] (-2)^n, {n, 1, 10}] (* Vladimir Reshetnikov, Oct 21 2015 *)
  • PARI
    {a(n) = if( n<1, 0, ((-2)^n - (-8)^n) * bernfrac(2*n) / n)}; /* Michael Somos, Jun 22 2002 */
    
  • PARI
    {a(n) = if( n<0, 0, (2*n)! * polcoeff( -2 * log( cos(x / quadgen(8) + O(x^(2*n + 1)))), 2*n))}; /* Michael Somos, Jul 17 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, -(-2)^(n+1) * sum(i=1, 2*n, 2^-i * sum(j=1, i, (-1)^j * binomial( i-1, j-1) * j^(2*n - 1))))}; /* Michael Somos, Sep 07 2013 */
    
  • PARI
    {a(n)=local(CF=1+x*O(x^n));if(n<1,return(0), for(k=1,n,CF=1/(1-(n-k+1)*(n-k+2)/2*x*CF));return(Vec(CF)[n]))}  /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,tanh(k*X)));n!*polcoeff(Egf,n)} /* Paul D. Hanna, May 11 2010 */
    
  • Python
    from sympy import bernoulli
    def A002105(n): return abs(((2-(2<<(m:=n<<1)))*bernoulli(m)<Chai Wah Wu, Apr 14 2023
    
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A002105_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; z = 1/2; b = True
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1, 0, -1) : D[k] += D[k+1]
                z *= 2
            else :
                for k in range(1, h+1, 1) :  D[k] += D[k-1]
            b = not b
            if b : R.append(D[h]*z/h)
        return R
    A002105_list(16) # Peter Luschny, Jun 29 2012
    
  • SageMath
    def A002105(n): return (-1)^(n+1)*2^n*(4^n -1)*bernoulli(2*n)/n
    [A002105(n) for n in range(1,31)] # G. C. Greubel, Sep 20 2024
    

Formula

E.g.f.: 2*log(sec(x / sqrt(2))) = Sum_{n>0} a(n) * x^(2*n) / (2*n)!. - Michael Somos, Jun 22 2002
A000182(n) = 2^(n-1) * a(n). - Michael Somos, Jun 22 2002
a(n) = 2^(n-1)/n * A110501(n). - Don Knuth, Jan 16 2007
a(n+1) = Sum_{k = 0..n} A094665(n, k). - Philippe Deléham, Jun 11 2004
O.g.f.: A(x) = x/(1-x/(1-3*x/(1-6*x/(1-10*x/(1-15*x/(... -n*(n+1)/2*x/(1 - ...))))))) (continued fraction). - Paul D. Hanna, Oct 07 2005
sqrt(2) tan( x/sqrt(2)) = Sum_(n>=0) (x^(2n+1)/(2n+1)!) a_n. - Dominique Foata and Guo-Niu Han, Oct 24 2008
Basic hypergeometric generating function: Sum_{n>=0} Product {k = 1..n} (1-exp(-2*k*t))/Product {k = 1..n} (1+exp(-2*k*t)) = 1 + t + 4*t^2/2! + 34*t^3/3! + 496*t^4/4! + ... [Andrews et al., Theorem 4]. For other sequences with generating functions of a similar type see A000364, A000464, A002439, A079144 and A158690. - Peter Bala, Mar 24 2009
E.g.f.: Sum_{n>=0} Product_{k=1..n} tanh(k*x) = Sum_{n>=0} a(n)*x^n/n!. - Paul D. Hanna, May 11 2010
a(n) = (-1)^(n+1)*sum(j!*stirling2(2*n+1,j)*2^(n+1-j)*(-1)^(j),j,1,2*n+1), n>=0. - Vladimir Kruchinin, Aug 23 2010
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = upper left term in M^n, a(n+1) = sum of top row terms in M^n; where M = the infinite square production matrix:
1, 3, 0, 0, 0, 0, 0, ...
1, 3, 6, 0, 0, 0, 0, ...
1, 3, 6, 10, 0, 0, 0, ...
1, 3, 6, 10, 15, 0, 0, ... (End)
E.g.f. A(x) satisfies differential equation A''(x)=exp(A(x)). - Vladimir Kruchinin, Nov 18 2011
E.g.f.: For E(x)=sqrt(2)* tan( x/sqrt(2))=x/G(0); G(k)= 4*k + 1 - x^2/(8*k + 6 - x^2/G(k+1)); (from continued fraction Lambert's, 2-step). - Sergei N. Gladkovskii, Jan 14 2012
a(n) = (-1)^n*2^(n+1)*Li_{1-2*n}(-1). (See also the Mathematica prog. by Vladimir Reshetnikov.) - Peter Luschny, Jun 28 2012
G.f.: 1/G(0) where G(k) = 1 - x*( 4*k^2 + 4*k + 1 ) - x^2*(k+1)^2*( 4*k^2 + 8*k + 3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 14 2013
G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*(k+2)/2*x/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: (1/G(0))/sqrt(x) - 1/sqrt(x), where G(k) = 1 - sqrt(x)*(2*k+1)/(1 + sqrt(x)*(2*k+1)/(1 + sqrt(x)*(k+1)/(1 - sqrt(x)*(k+1)/G(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Jul 07 2013
log(2) - 1/1 + 1/2 - 1/3 + ... + (-1)^n / n = (-1)^n / 2 * (1/n - 1 / (2*n^2) + 1 / (2*n^2)^2 - 4 / (2*n^2)^3 + ... + (-1)^k * a(k) / (2*n^2)^k + ...) asymptotic expansion. - Michael Somos, Sep 07 2013
G.f.: T(0), where T(k) = 1-x*(k+1)*(k+2)/(x*(k+1)*(k+2)-2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) ~ 2^(3*n+2) * n^(2*n-1/2) / (exp(2*n) * Pi^(2*n-1/2)). - Vaclav Kotesovec, Nov 03 2014
From Peter Bala, Sep 10 2015: (Start)
The e.g.f. A(x) = sqrt(2)*tan(x/sqrt(2)) satisfies A''(x) = A(x)*A'(x), hence the recurrence a(0) = 0, a(1) = 1, else a(n) = Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the aerated sequence [0,1,0,1,0,4,0,34,0,496,...].
Note that the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence [1,1,1,2,5,16,61,272,...] = A000111. (End)
a(n) = polygamma(2*n-1, 1/2)*2^(2-n)/Pi^(2*n). - Vladimir Reshetnikov, Oct 18 2015
E.g.f.: sqrt(2)*tan(x/sqrt(2)) = Sum_{n>0} a(n) * x^(2*n-1) / (2*n-1)!. - Michael Somos, Mar 05 2017
From Peter Bala, May 05 2017: (Start)
Let B(x) = A(x)/x = 1 + x + 4*x^2 + 34*x^3 + ... denote the shifted o.g.f. Then B(x) = 1/(1 + 2*x - 3*x/(1 - x/(1 + 2*x - 10*x/(1 - 6*x/(1 + 2*x - 21*x/(1 - 15*x/(1 + 2*x - 36*x/(1 - 28*x/(1 + 2*x - ...))))))))), where the coefficient sequence [3, 1, 10, 6, 21, 15, 36, 28, ...] in the partial numerators of the continued fraction is obtained by swapping adjacent triangular numbers. Cf. A079144.
It follows (by means of an equivalence transformation) that the second binomial transform of B(x), with g.f. equal to 1/(1 - 2*x)*B(x/(1 - 2*x)), has the S-fraction representation 1/(1 - 3*x/(1 - x/(1 - 10*x/(1 - 6*x/(1 - 21*x/(1 - 15*x/(1 - 36*x/(1 - 28*x/(1 - ...))))))))). Compare with the S-fraction representation of the g.f. A(x) given above by Hanna, dated Oct 07 2005. (End)
The computation can be based on the triangular numbers, a(n) = T(n, n) where T(n, k) = A000217(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, and T(n, 0) = 1, T(n, n) = T(n, k-1) if k > 0. This is equivalent to Paul D. Hanna's continued fraction 2005. - Peter Luschny, Sep 30 2023

Extensions

Additional comments from Michael Somos, Jun 25 2002

A000464 Expansion of e.g.f. sin(x)/cos(2*x).

Original entry on oeis.org

1, 11, 361, 24611, 2873041, 512343611, 129570724921, 44110959165011, 19450718635716001, 10784052561125704811, 7342627959965776406281, 6023130568334172003579011, 5858598896811701995459355761, 6667317162352419006959182803611, 8776621742176931117228228227924441
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Dec 22 2021: (Start)
Conjectures:
1) Taking the sequence (a(n))n>=1 modulo an integer k gives a purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 21 begins [11, 4, 20, 10, 17, 1, 11, 4, 20, 10, 17, 1, 11, 4, 20, 10, 17, 1, ...] with an apparent period of length 6, which divides phi(21) = 12.
2) For i >= 0, define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients.
3) a(m*n) == a(m)^n (mod 2^k) for k = 2*v_2(m) + 4, where v_p(i) denotes the p-adic valuation of i.
4)(i) a(2*m*n) == a(n)^(2*m) (mod 2^k) for k = v_2(m) + 4
(ii) a((2*m+1)*n) == a(n)^(2*m+1) (mod 2^k) for k = v_2(m) + 4. (End)

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag.
  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x/ cos 2x and sin x/ cos 2x", Quart. J. Pure and Applied Math., 45 (1914), 187-222.
  • I. J. Schwatt, Intro. to Operations with Series, Chelsea, p. 278.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 2 of A235606.
Cf. A064073. Bisection of A000822, A001586.

Programs

  • Maple
    a := n -> (-1)^n*2^(6*n+4)*(Zeta(0, -2*n-1, 5/8)-Zeta(0, -2*n-1, 7/8)):
    seq(a(n), n=0..12); # Peter Luschny, Oct 15 2015
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Sin[x]/Cos[2x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Mar 23 2012 *)
    nmax = 15; km0 = 10; d[n_, km_] := Round[(2^(4n-1/2) (2n-1)! Sum[ JacobiSymbol[2, 2k+1]/(2k+1)^(2n), {k, 0, km}])/Pi^(2n)]; dd[km_] := dd[km] = Table[d[n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2*km0]; While[dd[km] != dd[km/2, km = 2*km]]; A000464 = dd[km] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    a(n)=if(n<0, 0, n+=n+1; n!*polcoeff(sin(x+x*O(x^n))/cos(2*x+x*O(x^n)),n)) /* Michael Somos, Feb 09 2006 */

Formula

E.g.f.: Sum_{k>=0} a(k)x^(2k+1)/(2k+1)! = sin(x)/cos(2x).
a(n) = (-1)^n*L(X,-2n+1) where L(X,z) is the Dirichlet L-function L(X,z) = Sum_{k>=0} X(k)/k^z and where X(k) is the Dirichlet character Legendre(k,2) which begins 1,0,-1,0,-1,0,1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0.... - Benoit Cloitre, Mar 22 2009 [This Dirichlet character is A091337. - Jianing Song, Oct 22 2023]
From Peter Bala, Mar 24 2009: (Start)
Basic hypergeometric generating function:
2*exp(-t)*Sum_{n = 0..inf} (Product_{k = 1..n} (1-exp(-16*k*t))/Product_{k = 1..n+1} (1+exp(-(16*k-8)*t))) = 1 + 11*t + 361*t^2/2! + 24611*t^3/3! + .... For other sequences with generating functions of a similar type see A000364, A002105, A002439, A079144 and A158690.
a(n) = (-1)^(n+1)*L(-2*n-1), where L(s) is the Dirichlet L-function L(s) = 1 - 1/3^s - 1/5^s + 1/7^s + - - + ... [Andrews et al., Theorem 5]. (End)
From Peter Bala, Jun 18 2009: (Start)
a(n) = (-1)^n*B_(2*n+2)(X)/(2*n+2), where B_n(X) denotes the X-Bernoulli number with X a Dirichlet character modulus 8 given by X(8*n+1) = X(8*n+7) = 1, X(8*n+3) = X(8*n+5) = -1 and X(2*n) = 0. See A161722 for the values of B_n(X).
For the theory and properties of the generalized Bernoulli numbers B_n(X) and the associated generalized Bernoulli polynomials B_n(X,x) see [Cohen, Section 9.4].
The present sequence also occurs in the evaluation of the finite sum of powers Sum_{i = 0..m-1} {(8*i+1)^n - (8*i+3)^n - (8*i+5)^n + (8*i+7)^n}, n = 1,2,... - see A151751 for details. (End)
G.f. 1/G(0) where G(k) = 1 + x - x*(4*k+3)*(4*k+4)/(1 - (4*k+4)*(4*k+5)*x/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 11 2012
G.f.: 1/E(0) where E(k) = 1 - 11*x - 32*x*k*(k+1) - 16*x^2*(k+1)^2*(4*k+3)*(4*k+5)/E(k+1) (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
a(n) ~ (2*n+1)! * 2^(4*n+7/2) / Pi^(2*n+2). - Vaclav Kotesovec, May 03 2014
a(n) = (-1)^n*2^(6*n+4)*(Zeta(-2*n-1,5/8)-Zeta(-2*n-1,7/8)). - Peter Luschny, Oct 15 2015
From Peter Bala, May 11 2017: (Start)
G.f. A(x) = 1 + 11*x + 361*x^2 + ... = 1/(1 + x - 12*x/(1 - 20*x/(1 + x - 56*x/(1 - 72*x/(1 + x - ... - 4*n*(4*n - 1)*x/(1 - 4*n*(4*n + 1)*x/((1 + x) - ...))))))).
A(x) = 1/(1 + 9*x - 20*x/(1 - 12*x/(1 + 9*x - 72*x/(1 - 56*x/(1 + 9*x - ... - 4*n*(4*n + 1)*x/(1 - 4*n*(4*n - 1)*x/(1 + 9*x - ...))))))).
It follows that the first binomial transform of A(x) and the ninth binomial transform of A(x) have continued fractions of Stieltjes-type (S-fractions). (End)
a(n) = (-1)^(n+1)*4^(2*n+1)*E(2*n+1,1/4), where E(n,x) is the n-th Euler polynomial. Cf. A002439. - Peter Bala, Aug 13 2017
From Peter Bala, Dec 04 2021: (Start)
F(x) = exp(x)*(exp(2*x) - 1)/(exp(4*x) + 1) = x - 11*x^3/3! + 361x^5/5! - 24611*x^7/7! + ... is the e.g.f. for the sequence [1, 0, -11, 0, 361, 0, -24611, 0, ...], a signed and aerated version of this sequence.
The binomial transform exp(x)*F(x) = x + 2*x^2/2! - 8*x^3/3! - 40*x^4/4! + + - - is an e.g.f. for a signed version of A000828 (omitting the initial term). (End)
From Peter Bala, Dec 22 2021: (Start)
a(1) = 1, a(n) = (-1)^(n-1) - Sum_{k = 1..n} (-4)^k*C(2*n-1,2*k)*a(n-k).
a(n) == 1 (mod 10); a(5*n+1) == 0 mod(11);
a(n) == - 23^(n+1) (mod 108); a(n) == (7^2)*59^n (mod 144);
a(n) == 11^n (mod 240); a(n) == (11^2)*131^n (mod 360). (End)

Extensions

Better description, new reference, Aug 15 1995

A104035 Triangle T(n,k), 0 <= k <= n, read by rows, defined by T(0,0) = 1; T(0,k) = 0 if k>0 or if k<0; T(n,k) = k*T(n-1,k-1) + (k+1)*T(n-1,k+1).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 5, 0, 6, 5, 0, 28, 0, 24, 0, 61, 0, 180, 0, 120, 61, 0, 662, 0, 1320, 0, 720, 0, 1385, 0, 7266, 0, 10920, 0, 5040, 1385, 0, 24568, 0, 83664, 0, 100800, 0, 40320, 0, 50521, 0, 408360, 0, 1023120, 0, 1028160, 0, 362880, 50521, 0, 1326122, 0, 6749040
Offset: 0

Views

Author

Philippe Deléham, Apr 06 2005

Keywords

Comments

Or, triangle of coefficients (with exponents in increasing order) in polynomials Q_n(u) defined by d^n sec x / dx^n = Q_n(tan x)*sec x.
Interpolates between factorials and Euler (or secant) numbers. Related to Springer numbers.
Companion triangles are A155100 (derivative polynomials of tangent function) and A185896 (derivative polynomials of squared secant function).
A combinatorial interpretation for the polynomial Q_n(u) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges]. A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation. Adjoin x_0 = 0 to the front of the permutation and x_(n+1) = (-1)^n*(n+1) to the end to form x_0,x_1,...,x_n,x_(n+1). Then x_0,x_1,...,x_n,x_(n+1) is a snake of type S(n;0) when x_0 < x_1 > x_2 < ... x_(n+1). For example, 0 3 -1 2 -4 is a snake of type S(3;0).
Let sc be the number of sign changes through a snake ... sc = #{i, 0 <= i <= n, x_i*x_(i+1) < 0}. For example, the snake 0 3 -1 2 -4 has sc = 3. The polynomial Q_n(u) is the generating function for the sign change statistic on snakes of type S(n;0): ... Q_n(u) = sum {snakes in S(n;0)} u^sc. See the example section below for the cases n = 2 and n = 3.
PRODUCTION MATRIX
Let D = subdiag(1,2,3,...) be the array with the indicated sequence on the first subdiagonal and zeros elsewhere and let C = transpose(D). The production matrix for this triangle is C+D: the first row of (C+D)^n is the n-th row of this triangle. D represents the derivative operator d/dx and C represents the operator p(x) -> x*d/dx(x*p(x)) acting on the basis monomials {x^n}n>=0. See Formula (1) below.

Examples

			The polynomials Q_0(u) through Q_6(u) (with exponents in decreasing order) are:
  1
  u
  2*u^2 + 1
  6*u^3 + 5*u
  24*u^4 + 28*u^2 + 5
  120*u^5 + 180*u^3 + 61*u
  720*u^6 + 1320*u^4 + 662*u^2 + 61
Triangle begins:
  1
  0 1
  1 0 2
  0 5 0 6
  5 0 28 0 24
  0 61 0 180 0 120
  61 0 662 0 1320 0 720
  0 1385 0 7266 0 10920 0 5040
  1385 0 24568 0 83664 0 100800 0 40320
  0 50521 0 408360 0 1023120 0 1028160 0 362880
  50521 0 1326122 0 6749040 0 13335840 0 11491200 0 3628800
  0 2702765 0 30974526 0 113760240 0 185280480 0 139708800 0 39916800
  2702765 0 98329108 0 692699304 0 1979524800 0 2739623040 0 1836172800 0 479001600
Examples of sign change statistic sc on snakes of type S(n;0)
= = = = = = = = = = = = = = = = = = = = = =
.....Snakes....# sign changes sc.......u^sc
= = = = = = = = = = = = = = = = = = = = = =
n=2
...0 1 -2 3...........2.................u^2
...0 2  1 3...........0.................1
...0 2 -1 3...........2.................u^2
yields Q_2(u) = 2*u^2 + 1.
n=3
...0 1 -2  3 -4.......3.................u^3
...0 1 -3  2 -4.......3.................u^3
...0 1 -3 -2 -4.......1.................u
...0 2  1  3 -4.......1.................u
...0 2 -1  3 -4.......3.................u^3
...0 2 -3  1 -4.......3.................u^3
...0 2 -3 -2 -4.......1.................u
...0 3  1  2 -4.......1.................u
...0 3 -1  2 -4.......3.................u^3
...0 3 -2  1 -4.......3.................u^3
...0 3 -2 -1 -4.......1.................u
yields Q_3(u) = 6*u^3 + 5*u.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see pp. 445 and 469.

Crossrefs

See A008294 for another version of this triangle.
Setting u=0,1,2,3,4 gives A000364, A001586, A156129, A156131, A156132.
Setting u=sqrt(2) gives A156134 and A156138; u=sqrt(3) gives A002437 and A002439.

Programs

Formula

T(n, n) = n!; T(n, 0) = 0 if n = 2m + 1; T(n, 0) = A000364(m) if n = 2m.
Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0).
Sum_{k>=0} T(n, k) = A001586(n): Springer numbers.
G.f.: Sum_{n >= 0} Q_n(u)*t^n/n! = 1/(cos t - u sin t).
From Peter Bala: (Start)
RECURRENCE RELATION
For n>=0,
(1)... Q_(n+1)(u) = d/du Q_n(u) + u*d/du(u*Q_n(u))
... = (1+u^2)*d/du Q_n(u) + u*Q_n(u),
with starting condition Q_0(u) = 1. Compare with Formula (4) of A186492.
RELATION WITH TYPE B EULERIAN NUMBERS
(2)... Q_n(u) = ((u+i)/2)^n*B(n,(u-i)/(u+i)), where i = sqrt(-1) and
[B(n,u)]n>=0 = [1,1+u,1+6*u+u^2,1+23*u+23*u^2+u^3,...] is the sequence of type B Eulerian polynomials (with a factor of u removed) - see A060187.
(End)
T(n,0) = abs(A122045(n)). - Reinhard Zumkeller, Apr 27 2014

Extensions

Entry revised by N. J. A. Sloane, Nov 06 2009

A000281 Expansion of cos(x)/cos(2x).

Original entry on oeis.org

1, 3, 57, 2763, 250737, 36581523, 7828053417, 2309644635483, 898621108880097, 445777636063460643, 274613643571568682777, 205676334188681975553003, 184053312545818735778213457, 193944394596325636374396208563
Offset: 0

Views

Author

Keywords

Comments

a(n) is (2n)! times the coefficient of x^(2n) in the Taylor series for cos(x)/cos(2x).

Examples

			cos x / cos 2*x = 1 + 3*x^2/2 + 19*x^4/8 + 307*x^6/80 + ...
		

References

  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x / cos 2x and sin x / cos 2x", Quart. J. Pure and Applied Math., 45 (1914), 187-222.
  • I. J. Schwatt, Intro. to Operations with Series, Chelsea, p. 278.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*2^(6*n+1)*(Zeta(0,-2*n,1/8)-Zeta(0,-2*n,5/8)):
    seq(a(n), n=0..13); # Peter Luschny, Mar 11 2015
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Cos[x]/Cos[2x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n*=2; n! * polcoeff( cos(x + x * O(x^n)) / cos(2*x + x * O(x^n)), n))}; /* Michael Somos, Feb 09 2006 */

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(2n, 2k)*A000364(n-k)*4^(n-k). - Philippe Deléham, Jan 26 2004
E.g.f.: Sum_{k>=0} a(k)x^(2k)/(2k)! = cos(x)/cos(2x).
a(n-1) is approximately 2^(4*n-3)*(2*n-1)!*sqrt(2)/((Pi^(2*n-1))*(2*n-1)). The approximation is quite good a(250) is of the order of 10^1181 and this formula is accurate to 238 digits. - Simon Plouffe, Jan 31 2007
G.f.: 1 / (1 - 1*3*x / (1 - 4*4*x / (1 - 5*7*x / (1 - 8*8*x / (1 - 9*11*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/E(0) where E(k) = 1 - 3*x - 16*x*k*(2*k+1) - 16*x^2*(k+1)^2*(4*k+1)*(4*k+3)/E(k+1) (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
G.f.: T(0)/(1-3*x), where T(k) = 1 - 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2/( 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2 - (32*x*k^2+16*x*k+3*x-1 )*(32*x*k^2+80*x*k+51*x -1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
From Peter Bala, Mar 09 2015: (Start)
a(n) = (-1)^n*4^(2*n)*E(2*n,1/4), where E(n,x) denotes the n-th Euler polynomial.
O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 + x*(4*k + 1)^2) = 1 + 3*x + 57*x^2 + 2763*x^3 + ....
We appear to have the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + .... See A093954.
Bisection of A001586. See also A188458 and A212435. Second row of A235605 (read as a square array).
The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255883. (End)
From Peter Luschny, Mar 11 2015: (Start)
a(n) = ((-64)^n/((n+1/2)))*(B(2*n+1,7/8)-B(2*n+1,3/8)), B(n,x) Bernoulli polynomials.
a(n) = 2*(-16)^n*LerchPhi(-1, -2*n, 1/4).
a(n) = (-1)^n*Sum_{0..2*n} 2^k*C(2*n,k)*E(k), E(n) the Euler secant numbers A122045.
a(n) = (-4)^n*SKP(2*n,1/2) where SKP are the Swiss-Knife polynomials A153641.
a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/8) - Zeta(-2*n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. (End)
From Peter Bala, May 13 2017: (Start)
G.f.: 1/(1 + x - 4*x/(1 - 12*x/(1 + x - 40*x/(1 - 56*x/(1 + x - ... - 4*n(4*n - 3)*x/(1 - 4*n(4*n - 1)*x/(1 + x - ...
G.f.: 1/(1 + 9*x - 12*x/(1 - 4*x/(1 + 9*x - 56*x/(1 - 40*x/(1 + 9*x - ... - 4*n(4*n - 1)*x/(1 - 4*n(4*n - 3)*x/(1 + 9*x - .... (End)
From Peter Bala, Nov 08 2019: (Start)
a(n) = sqrt(2)*4^n*Integral_{x = 0..inf} x^(2*n)*cosh(Pi*x/2)/cosh(Pi*x) dx. Cf. A002437.
The L-series 1 + 1/3^(2*n+1) - 1/5^(2*n+1) - 1/7^(2*n+1) + + - - ... = sqrt(2)*(Pi/4)^(2*n+1)*a(n)/(2*n)! (see Shanks), which gives a(n) ~ (1/sqrt(2))*(2*n)!*(4/Pi)^(2*n+1). (End)

A000460 Eulerian numbers (Euler's triangle: column k=3 of A008292, column k=2 of A173018).

Original entry on oeis.org

1, 11, 66, 302, 1191, 4293, 14608, 47840, 152637, 478271, 1479726, 4537314, 13824739, 41932745, 126781020, 382439924, 1151775897, 3464764515, 10414216090, 31284590870, 93941852511, 282010106381, 846416194536, 2540053889352, 7621839388981, 22869007827143
Offset: 3

Views

Author

Keywords

Comments

There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
Number of permutations of [n] with exactly 2 descents. - Mike Zabrocki, Nov 10 2004

References

  • L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • J. B. Remmel et al., The combinatorial properties of the Benoumhani polynomials for the Whitney numbers of Dowling lattices, Discrete Math., 342 (2019), 2966-2983. See page 2981.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A000295.

Programs

  • Magma
    [3^n-(n+1)*2^n+(1/2)*n*(n+1): n in [3..30]]; // Vincenzo Librandi, Apr 18 2017
    
  • Magma
    [EulerianNumber(n, 2): n in [3..40]]; // G. C. Greubel, Oct 02 2024
    
  • Maple
    A000460:=-z*(-1-z+4*z**2)/(-1+3*z)/(2*z-1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    k = 3; Table[k^(n+k-1) + Sum[(-1)^i/i!*(k-i)^(n+k-1) * Product[n+k+1-j, {j, 1, i}], {i, k-1}], {n, 23}] (* or *)
    Array[3^(# + 2) - (# + 3)*2^(# + 2) + (1/2)*(# + 2)*(# + 3) &, 23] (* Michael De Vlieger, Aug 04 2015, after PARI *)
  • PARI
    A000460(n) = 3^(n+2)-(n+3)*2^(n+2)+(1/2)*(n+2)*(n+3)
    
  • SageMath
    def A000460(n): return 3^n - (n+1)*2^n + binomial(n+1,2)
    [A000460(n) for n in range(3,31)] # G. C. Greubel, Oct 02 2024

Formula

a(n) = 3^n - (n+1)*2^n + (1/2)*n*(n+1). - Randall L Rathbun, Jan 22 2002
G.f.: x^3*(1+x-4*x^2)/((1-x)^3*(1-2*x)^2*(1-3*x)). - Mike Zabrocki, Nov 10 2004
E.g.f.: exp(x)*(exp(2*x) - (1 + 2*x)*exp(x) + x + x^2/2). - Wolfdieter Lang, Apr 17 2017

Extensions

More terms from Christian G. Bower, May 12 2000
More terms from Mike Zabrocki, Nov 10 2004
Showing 1-10 of 30 results. Next