cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A183069 L.g.f.: Sum_{n>=1,k>=0} CATALAN(n,k)^2 * x^(n+k)/n = Sum_{n>=1} a(n)*x^n/n, where CATALAN(n,k) = n*C(n+2*k-1,k)/(n+k) is the coefficient of x^k in C(x)^n and C(x) is the g.f. of the Catalan numbers.

Original entry on oeis.org

1, 3, 19, 163, 1626, 17769, 206487, 2508195, 31504240, 406214878, 5349255726, 71672186953, 974311431094, 13408623649893, 186491860191519, 2617716792257955, 37040913147928380, 527875569932002608, 7570657419156212256, 109194783587953243038
Offset: 1

Views

Author

Paul D. Hanna, Dec 23 2010

Keywords

Comments

Logarithmic derivative of A183070.
A bisection of A003162.
We conjecture that the sequence satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all primes p >= 5 and positive integers n and k. - Peter Bala, Mar 20 2023

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 19*x^3/3 + 163*x^4/4 + 1626*x^5/5 + ...
L(x) = (1 + x + 2^2*x^2 + 5^2*x^3 + 14^2*x^4 + ...)*x
+ (1 + 2^2*x + 5^2*x^2 + 14^2*x^3 + 42^2*x^4 + ...)*x^2/2
+ (1 + 3^2*x + 9^2*x^2 + 28^2*x^3 + 90^2*x^4 + ...)*x^3/3
+ (1 + 4^2*x + 14^2*x^2 + 48^2*x^3 + 165^2*x^4 + ...)*x^4/4
+ (1 + 5^2*x + 20^2*x^2 + 75^2*x^3 + 275^2*x^4 + ...)*x^5/5
+ (1 + 6^2*x + 27^2*x^2 + 110^2*x^3 + 429^2*x^4 + ...)*x^6/6 + ...
which consists of the squares of coefficients in the powers of C(x),
where C(x) = 1 + x*C(x)^2 is g.f. of the Catalan numbers.
...
Exponentiation yields the g.f. of A183070:
exp(L(x)) = 1 + x + 2*x^2 + 8*x^3 + 49*x^4 + 380*x^5 + 3400*x^6 + ...
		

Crossrefs

Programs

  • Magma
    [&+[(n-k)*Binomial(n+k-1, k)^2/n: k in [0..n]]: n in [1..30]]; // Vincenzo Librandi, Feb 16 2016
  • Mathematica
    Table[Sum[(n-k)*Binomial[n+k-1,k]^2/n,{k,0,n}],{n,1,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=if(n<1,0,sum(k=0,n,(n-k)*binomial(n+k-1,k)^2/n))}
    
  • PARI
    {a(n)=sum(k=0,n,(binomial(2*n+1,k)-binomial(2*n+1,k-1))^3)/binomial(2*n+1, n)}
    

Formula

a(n) = Sum_{k=0..n} (n-k)*C(n+k-1,k)^2/n for n>=1.
a(n) = Sum_{k=0..n-1} (C(2*n-1,k) - C(2*n-1,k-1))^3/C(2*n-1,n). [From a formula given in A003162 by Michael Somos.]
Recurrence: 2*n^2*(2*n-1)*(7*n^2 - 20*n + 14)*a(n) = (455*n^5 - 2427*n^4 + 4850*n^3 - 4406*n^2 + 1728*n - 216)*a(n-1) - 4*(n-2)*(2*n - 3)^2*(7*n^2 - 6*n + 1)*a(n-2). - Vaclav Kotesovec, Mar 06 2014
a(n) ~ 16^n/(9*Pi*n^2). - Vaclav Kotesovec, Mar 06 2014

Extensions

a(19)-a(20) from Vincenzo Librandi, Feb 16 2016