A003161
A binomial coefficient sum.
Original entry on oeis.org
1, 1, 2, 9, 36, 190, 980, 5705, 33040, 204876, 1268568, 8209278, 53105976, 354331692, 2364239592, 16140234825, 110206067400, 765868074400, 5323547715200, 37525317999884, 264576141331216, 1886768082651816, 13458185494436592, 96906387191038334, 697931136204820336
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1116
- F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
-
ogf := ((8*x-1)*(8*x+1)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)-3*Int((16*x-5)*hypergeom([1/4, 1/4],[1],64*x^2)^2/(x+1)^2,x)+1)/(16*x);
series(ogf,x=0,30); # Mark van Hoeij, May 06 2013
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3,{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
a(n)=sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3) /* Michael Somos, Jun 02 2005 */
A003162
A binomial coefficient summation.
Original entry on oeis.org
1, 1, 1, 3, 6, 19, 49, 163, 472, 1626, 5034, 17769, 57474, 206487, 688881, 2508195, 8563020, 31504240, 109492960, 406214878, 1432030036, 5349255726, 19077934506, 71672186953, 258095737156, 974311431094, 3537275250214, 13408623649893
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
H := hypergeom([1/2,1/2],[1],16*x^2);
ogf := (Int(6*H*(4*x^2+5)/(4-x^2)^(3/2),x)+H*(16*x^2-1)/(4-x^2)^(1/2))*((2-x)/(2+x))^(1/2)/(4*x)+1/(8*x);
series(ogf,x=0,20); # Mark van Hoeij, May 06 2013
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^3/Binomial[n, Floor[n/2]],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 06 2014 *)
-
a(n)=if(n<0, 0, sum(k=0,n\2, (binomial(n,k)-binomial(n,k-1))^3)/binomial(n,n\2)) /* Michael Somos, Jun 02 2005 */
A361887
a(n) = S(5,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 2, 33, 276, 4150, 65300, 1083425, 20965000, 399876876, 8461219032, 178642861782, 4010820554664, 90684123972156, 2130950905378152, 50560833176021025, 1231721051614138800, 30294218438009039800, 759645100717216142000, 19213764100954274616908, 493269287121905287769776
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361888 ( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5, k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^5, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
-
from math import comb
def A361887(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**5 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
A361890
a(n) = S(7,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 2, 129, 2316, 94510, 4939220, 211106945, 14879165560, 828070125876, 61472962084968, 4223017425122958, 325536754765395096, 25399546083773839692, 2059386837863675003112, 173281152533121109073025, 14789443838781868027714800, 1307994690673355979749969800
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A382394 ( S(3,2*n-1) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888 ( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/ S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^7, k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^7, {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
-
from math import comb
def A361890(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
A361888
a(n) = S(5,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 1, 11, 46, 415, 3265, 30955, 299500, 3173626, 33576266, 386672861, 4340714886, 52846226091, 620906440961, 7857161332715, 95704821415240, 1246162831674580, 15624127945644100, 207990691516965886, 2669841775757784796, 36176886727828945286, 473508685502539872586
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^5/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r);
a(n) = s(5, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
A361889
a(n) = S(5,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 11, 415, 30955, 3173626, 386672861, 52846226091, 7857161332715, 1246162831674580, 207990691516965886, 36176886727828945286, 6510211391453319830461, 1205449991704260042021490, 228686327051301858363357905, 44299708036441260810228742915, 8738765548899621077157770551275
Offset: 1
Examples of supercongruences:
a(13) - a(1) = 1205449991704260042021490 - 1 = 3*(13^3)*182893338143568508879 == 0 (mod 13^3).
a(2*5) - a(2) = 207990691516965886 - 11 = (5^3)*7*237703647447961 == 0 (mod 5^3)
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A382394 ( S(3,2*n-1) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888 ( S(5,n)/S(1,n) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(2*n-1,k) - binomial(2*n-1,k-1) )^5/binomial(2*n-1,n-1), k = 0..n-1), n = 1..20);
-
Table[Sum[(Binomial[2*n-1, k]-Binomial[2*n-1, k-1])^5 / Binomial[2*n-1, n-1], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
from math import comb
def A361889(n): return sum((comb((n<<1)-1,j)*(m:=n-j<<1)//(m+j))**5 for j in range(n))//comb((n<<1)-1,n-1) # Chai Wah Wu, Mar 25 2025
A361891
a(n) = S(7,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 1, 1, 43, 386, 9451, 246961, 6031627, 212559508, 6571985126, 243940325734, 9140730357409, 352312505157354, 14801600281919487, 600054439936968241, 26927918031565051915, 1149140935414286560040, 53804800109969394477580, 2401141625752684697505820
Offset: 0
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361892 ( S(7,2*n-1)/S(1,2*n-1) ).
-
seq(add( ( binomial(n,k) - binomial(n,k-1) )^7/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
-
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^7/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r);
a(n) = s(7, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
-
from math import comb
def A361891(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**7 for j in range((n>>1)+1))//comb(n,n>>1) # Chai Wah Wu, Mar 25 2025
A361892
a(n) = S(7,2*n-1)/S(1,2*n-1), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
Original entry on oeis.org
1, 43, 9451, 6031627, 6571985126, 9140730357409, 14801600281919487, 26927918031565051915, 53804800109969394477580, 116002825041515533807200418, 266118189111094898593879923346, 642598035707739308769581970619393
Offset: 1
Cf.
A003161 ( S(3,n) ),
A003162 ( S(3,n)/S(1,n) ),
A382394 ( S(3,2*n-1) ),
A183069 ( S(3,2*n-1)/ S(1,2*n-1) ),
A361887 ( S(5,n) ),
A361888 ( S(5,n)/S(1,n) ),
A361889 ( S(5,2*n-1)/S(1,2*n-1) ),
A361890 ( S(7,n) ),
A361891 ( S(7,n)/S(1,n) ).
-
seq(add( ( binomial(2*n-1,k) - binomial(2*n-1,k-1) )^7/binomial(2*n-1,n-1), k = 0..n-1), n = 1..20);
-
Table[Sum[(Binomial[2*n-1, k]-Binomial[2*n-1, k-1])^7 / Binomial[2*n-1, n-1], {k, 0, n-1}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
from math import comb
def A361892(n): return sum((comb((n<<1)-1,j)*(m:=n-j<<1)//(m+j))**7 for j in range(n))//comb((n<<1)-1,n-1) # Chai Wah Wu, Mar 25 2025
A382394
a(n) = Sum_{k=0..n} A128899(n,k)^3.
Original entry on oeis.org
1, 1, 9, 190, 5705, 204876, 8209278, 354331692, 16140234825, 765868074400, 37525317999884, 1886768082651816, 96906387191038334, 5066711735118128200, 268954195756648761900, 14464077426547576156440, 786729115199980286001225, 43219452658242723841261800
Offset: 0
-
a128899(n, k) = binomial(2*n-2, n-k)-binomial(2*n-2, n-k-2);
a(n) = sum(k=0, n, a128899(n, k)^3);
A183070
G.f.: A(x) = exp( Sum_{n>=1,k>=0} CATALAN(n,k)^2*x^(n+k)/n ), where CATALAN(n,k) = n*C(n+2*k-1,k)/(n+k) is the coefficient of x^k in C(x)^n and C(x) is the g.f. of the Catalan numbers.
Original entry on oeis.org
1, 1, 2, 8, 49, 380, 3400, 33469, 352763, 3914105, 45203847, 539095203, 6600723606, 82616454685, 1053503618516, 13650703465841, 179351890161617, 2385294488375623, 32066177447127597, 435218601202213040
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 49*x^4 + 380*x^5 + 3400*x^6 +...
The logarithm of the g.f. (A183069) begins:
log(A(x)) = x + 3*x^2/2 + 19*x^3/3 + 163*x^4/4 + 1626*x^5/5 +...
and equals the series:
log(A(x)) = (1 + x + 2^2*x^2 + 5^2*x^3 + 14^2*x^4 +...)*x
+ (1 + 2^2*x + 5^2*x^2 + 14^2*x^3 + 42^2*x^4 +...)*x^2/2
+ (1 + 3^2*x + 9^2*x^2 + 28^2*x^3 + 90^2*x^4 +...)*x^3/3
+ (1 + 4^2*x + 14^2*x^2 + 48^2*x^3 + 165^2*x^4 +...)*x^4/4
+ (1 + 5^2*x + 20^2*x^2 + 75^2*x^3 + 275^2*x^4 +...)*x^5/5 +...
which consists of the squares of coefficients in powers of C(x),
where C(x) = 1 + x*C(x)^2 is g.f. of the Catalan numbers (A000108).
...
Compare the above series for log(A(x)) to log(C(x)):
log(C(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 +...)*x
+ (1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 5^2*x^4 +...)*x^2/2
+ (1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)*x^3/3
+ (1 + 4^2*x + 10^2*x^2 + 20^2*x^3 + 35^2*x^4 +...)*x^4/4
+ (1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)*x^5/5 +...
which consists of the squares of coefficients in powers of 1/(1-x).
-
{a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, (m*binomial(m+2*k-1,k)/(m+k))^2*x^k)*x^m/m)+x*O(x^n)), n)}
Showing 1-10 of 10 results.
Comments