cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319696 Number of distinct values obtained when Euler phi (A000010) is applied to the divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 4, 4, 2, 3, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 2, 4, 2, 5, 4, 2, 4, 5, 2, 2, 4, 5, 2, 4, 2, 4, 6, 2, 2, 5, 3, 3, 4, 4, 2, 4, 4, 6, 4, 2, 2, 5, 2, 2, 5, 6, 4, 4, 2, 4, 4, 4, 2, 7, 2, 2, 6, 4, 4, 4, 2, 6, 5, 2, 2, 6, 4, 2, 4, 6, 2, 6, 4, 4, 4, 2, 4, 6, 2, 3, 6, 6, 2, 4, 2, 6, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Examples

			For n = 6, it has four divisors: 1, 2, 3 and 6, and applying A000010 to these gives 1, 1, 2, 2, with just two distinct values, thus a(6) = 2.
		

Crossrefs

Cf. also A184395, A319686.

Programs

  • PARI
    A319696(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s=eulerphi(d)), mapput(m,s,s); k++)); (k); };

Formula

a(n) = A319695(n) + [n (mod 4) != 2], where [ ] is the Iverson bracket, resulting 0 when n = 2 mod 4, and 1 otherwise.

A319686 Number of distinct values obtained when arithmetic derivative (A003415) is applied to the divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 6, 2, 6, 3, 3, 3, 8, 2, 3, 3, 7, 2, 6, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 10, 2, 3, 5, 7, 3, 6, 2, 5, 3, 6, 2, 11, 2, 3, 5, 5, 3, 6, 2, 9, 5, 3, 2, 10, 3, 3, 3, 7, 2, 10, 3, 5, 3, 3, 3, 11, 2, 5, 5, 8, 2, 6, 2, 7, 6, 3, 2, 11, 2, 6, 3, 8, 2, 6, 3, 5, 5, 3, 3, 14
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Crossrefs

One more than A319685.
Cf. A003415.
Cf. also A184395, A319696.

Programs

  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := CountDistinct[d /@ Divisors[n]]; Array[a, 100] (* Amiram Eldar, Apr 17 2024 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A319686(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s=A003415(d)), mapput(m,s,s); k++)); (k); };
    
  • PARI
    a(n) = my(d = divisors(n)); for(i = 1, #d, d[i] = A003415(d[i])); #Set(d) \\ uses A003415 listed at Antti's programs. David A. Corneth, Oct 02 2018

Formula

a(n) = 1+A319685(n).

A184396 a(n) = number of numbers k <= sigma(n) such that k is not equal to sigma(d) for any divisor d of n, where sigma = A000203.

Original entry on oeis.org

0, 1, 2, 4, 4, 8, 6, 11, 10, 14, 10, 22, 12, 20, 20, 26, 16, 33, 18, 36, 28, 32, 22, 52, 28, 38, 36, 50, 28, 64, 30, 57, 44, 50, 44, 82, 36, 56, 52, 82, 40, 88, 42, 78, 72, 68, 46, 114, 54, 87, 68, 92, 52, 112, 68, 112, 76, 86, 58, 156, 60, 92, 98, 120, 80, 137, 66, 120, 92, 136, 70, 183, 72, 110, 118, 134, 92, 160, 78, 176, 116
Offset: 1

Views

Author

Jaroslav Krizek, Jan 12 2011

Keywords

Comments

Sequence is not the same as A065608(n): a(66) = 137, A065608(66) = 136.

Examples

			For n = 4, sigma(4) = 7, from numbers 1 - 7 there are four numbers k such that k is not equal to sigma(d) for any divisor d of n: 2, 4, 5, 6; a(4) = 4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 1, lmt = DivisorSigma[1, n] + 1, sd = DivisorSigma[1, #] & /@ Divisors@ n}, While[k < lmt, If[! MemberQ[sd, k], c++]; k++]; c]; Array[f, 67]
  • PARI
    A184395(n) = length(vecsort(apply(d->sigma(d),divisors(n)), , 8));
    A184396(n) = (sigma(n) - A184395(n)); \\ Antti Karttunen, Aug 24 2017

Formula

a(n) = A000203(n) - A184395(n).

Extensions

More terms from Antti Karttunen, Aug 24 2017

A206031 a(n) = product of numbers k <= sigma(n) such that k = sigma(d) for any divisor d of n where sigma = A000203.

Original entry on oeis.org

1, 3, 4, 21, 6, 144, 8, 315, 52, 324, 12, 28224, 14, 576, 576, 9765, 18, 73008, 20, 95256, 1024, 1296, 24, 25401600, 186, 1764, 2080, 225792, 30, 26873856, 32, 615195, 2304, 2916, 2304, 1302170688, 38, 3600, 3136, 128595600, 42, 84934656, 44, 762048, 584064
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

Sequence is not the same as A206032(n): a(66) = 35831808, A206032(66) = 429981696.
In sequence A206032 are multiplied all values of sigma(d) of all divisors d of numbers n, in sequence a(n) are multiplied only distinct values of sigma(d) of all divisors d of numbers n.

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Product of k = 1*3*4*12 = 144. For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Product of k = 1*3*4*12*36*48*144 = 35831808.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Union[DivisorSigma[1, Divisors[n]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)
  • PARI
    a(n)=my(d=vecsort(apply(sigma,divisors(n)),,8));prod(i=2,#d,d[i]) \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(p) = p+1, a(pq) = ((p+1)*(q+1))^2 for p, q = distinct primes.
Showing 1-4 of 4 results.