A185077 Numbers such that the largest prime factor equals the sum of the squares of the other prime factors.
78, 156, 234, 290, 312, 468, 580, 624, 702, 742, 936, 1014, 1160, 1248, 1404, 1450, 1484, 1872, 2028, 2106, 2320, 2496, 2808, 2900, 2968, 3042, 3744, 4056, 4212, 4498, 4640, 4992, 5194, 5616, 5800, 5936, 6084, 6318, 7250, 7488, 8112, 8410, 8424, 8715, 8996, 9126, 9280, 9962
Offset: 1
Keywords
Examples
8996 is in the sequence because the prime divisors are {2, 13, 173} and 173 = 13^2 + 2^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..725 from Robert Israel)
Programs
-
Maple
filter:= proc(n) local F,f,x; F:= numtheory:-factorset(n); f:= max(F); evalb(f = add(x^2,x=F minus {f})); end proc: select(filter, [$1..10000]); # Robert Israel, Jul 02 2014
-
Mathematica
Reap[Do[p = First /@ FactorInteger[n]; If[p[[-1]] == Plus@@(Most[p]^2), Sow[n]], {n, 9962}]][[2, 1]] lpfQ[n_]:=With[{f=FactorInteger[n][[;;,1]]},Total[Most[f]^2]==Last[f]]; Select[Range[10000],lpfQ] (* Harvey P. Dale, Jul 28 2024 *)
-
PARI
isok(n) = {my(f = factor(n)); f[#f~, 1] == sum(i=1, #f~ - 1, f[i, 1]^2);} \\ Michel Marcus, Jul 02 2014
Extensions
Corrected by T. D. Noe, Feb 18 2011
Comments