A185141 a(n) = (n!)^(2*n).
1, 1, 16, 46656, 110075314176, 619173642240000000000, 19408409961765342806016000000000000, 6823819180249038753817675898369448345600000000000000, 48789725533845219197010193096946682961355723304326670581760000000000000000
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..22
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, The Stable Matching Problem and Sudoku, arXiv:2108.02654 [math.HO], 2021.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, The Stable Marriage Problem and Sudoku, College Math. J. (2023).
- G. Dahl, Permutation matrices related to Sudoku, Linear Algebra and its Applications, 430 (2001), 2457-2463.
- sudopedia.org, Template
Crossrefs
Cf. A000142.
Programs
-
Mathematica
Table[(n!)^(2 n), {n, 0, 7}] (* T. D. Noe, Jan 24 2012 *)
-
PARI
for(n=0,5, print1((n!)^(2*n), ", ")) \\ G. C. Greubel, Jun 23 2017
Formula
a(n) ~ n^(n*(2*n+1)) * 2^n * Pi^n / exp(2*n^2 - 1/6). - Vaclav Kotesovec, Feb 19 2015
Equals 2*n-th power of A000142.
Comments