A306760
a(n) = Product_{i=1..n, j=1..n} (i*j + 1).
Original entry on oeis.org
1, 2, 90, 705600, 4105057320000, 52487876090562232320000, 3487017405172854771910634342400000000, 2448893405298238642974553493547144534294528000000000000, 33257039167768610289435138215602132823918399655132218973388800000000000000000
Offset: 0
-
a:= n-> mul(mul(i*j+1, i=1..n), j=1..n):
seq(a(n), n=0..9); # Alois P. Heinz, Jun 24 2023
-
Table[Product[i*j + 1, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
Table[n!^(2*n) * Product[Binomial[n + 1/j, n], {j, 1, n}], {n, 1, 10}]
A343698
a(n) is the number of preference profiles in the stable marriage problem with n men and n women such that there are n pairs of soulmates (people who rank each other first).
Original entry on oeis.org
1, 2, 384, 40310784, 7608405715845120, 6419592322744320000000000000, 50709051409862934701619019776000000000000000, 6988904507653043786857875068352862005134308147200000000000000000
Offset: 1
For n = 3, there are 3! = 6 ways to pair the men and women into soulmate pairs, then 2! ways to finish each person's preference profile, making 6 * 2!^6 = 384 ways to set up the preference profiles.
- Michael De Vlieger, Table of n, a(n) for n = 1..23
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A351409
a(n) = n*(n!)^(2*n-2).
Original entry on oeis.org
1, 8, 3888, 764411904, 214990848000000000, 224634374557469245440000000000, 1880461634768804771224006806208512000000000000, 240091793104790737576620139562796649430329798636339200000000000000, 813675117804798213250391541747787241264315446434692481270971279693253181440000000000000000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..20
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 7, Symmetries].
A343700
a(n) is the number of preference profiles in the stable marriage problem with n men and n women such that there are no pairs of people who rank each other first.
Original entry on oeis.org
0, 2, 9984, 28419102720, 175302739963548794880, 5801674463718565478400000000000000, 2113937863028052653298578438638220083200000000000000, 15500609395854457241550377325238753195602871153217230602240000000000000000
Offset: 1
For n=2, suppose A and B are the men and C and D are the women, then the only two possibilities are the following: a) A prefers C, C prefers B, B prefers D, and D prefers A; 2) A prefers D, D prefers B, B prefers C, and C prefers A.
- Michael De Vlieger, Table of n, a(n) for n = 1..22
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
-
Table[Total[
Table[(-1)^i Binomial[n, i]^2 (n - 1)!^(2 i) i! n!^(2 n - 2 i), {i,
0, n}]], {n, 10}]
-
a(n) = sum(i=0, n, ((-1)^i * binomial(n, i)^2 * (n - 1)!^(2*i) * i! * n!^(2*n - 2*i))); \\ Michel Marcus, Jan 20 2023
A349506
a(n) is the numerator of n!^(2*n)/(n^n^2).
Original entry on oeis.org
1, 1, 64, 6561, 63403380965376, 1000000000000, 10061319724179153710638694400000000000000, 9396559338406702410023114843902587890625, 528450425551613768181656289451784661530463698944000000000000000000, 13597557929083423616920569866317288159544321459878738801559053666747416576
Offset: 1
- Stefano Spezia, Table of n, a(n) for n = 1..30
- Maya Mohsin Ahmed, Algebraic Combinatorics of Magic Squares, University of California - Davis, Ph.D. Thesis, 2004; arXiv:math/0405476 [math.CO], 2004. See p. 43.
- Maya Mohsin Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral Cones of Magic Cubes and Squares. In: Aronov B., Basu S., Pach J., Sharir M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg (2003). arXiv:math/0201108 [math.CO], 2002. See p. 3.
- Fuzhen Zhang and Xiao-Dong Zhang, Comparison of the upper bounds for the extreme points of the polytopes of line-stochastic tensors, arXiv:2110.12337 [math.CO], 2021. See p. 3.
-
Table[Numerator[n!^(2n)/(n^n^2)],{n,10}]
-
a(n) = numerator(n!^(2*n)/n^n^2); \\ Michel Marcus, Nov 22 2021
A349507
a(n) is the denominator of n!^(2*n)/(n^n^2).
Original entry on oeis.org
1, 1, 27, 256, 30517578125, 531441, 378818692265664781682717625943, 1208925819614629174706176, 8727963568087712425891397479476727340041449, 867361737988403547205962240695953369140625, 12527829399838427440107579247354215251149392000034969484678615956504532008683916069945559954314411495091
Offset: 1
- Stefano Spezia, Table of n, a(n) for n = 1..28
- Maya Mohsin Ahmed, Algebraic Combinatorics of Magic Squares, University of California - Davis, Ph.D. Thesis, 2004; arXiv:math/0405476 [math.CO], 2004. See p. 43.
- Maya Mohsin Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral Cones of Magic Cubes and Squares. In: Aronov B., Basu S., Pach J., Sharir M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg (2003). arXiv:math/0201108 [math.CO], 2002. See p. 3.
- Fuzhen Zhang and Xiao-Dong Zhang, Comparison of the upper bounds for the extreme points of the polytopes of line-stochastic tensors, arXiv:2110.12337 [math.CO], 2021. See p. 3.
-
Table[Denominator[n!^(2n)/(n^n^2)],{n,11}]
-
a(n) = denominator(n!^(2*n)/n^n^2); \\ Michel Marcus, Nov 22 2021
A343474
a(n) is the number of preference profiles for n men and n women, where all men prefer the same woman and all women prefer the same man.
Original entry on oeis.org
1, 4, 576, 26873856, 1585084524134400, 320979616137216000000000000, 493004666484778531821296025600000000000000, 11093499218496894899774404870401368262117949440000000000000000
Offset: 1
When n=2, there are 4 ways to pick a man and woman who are preferred by all people of the opposite gender, and then 1 way to fill in each of the remaining slots in every person's preference profile. So, there are 4 different preference profiles.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
A343696
a(n) is the number of preference profiles in the stable marriage problem with n men and n women, such that the men's preference profiles form a Latin square.
Original entry on oeis.org
1, 8, 2592, 191102976, 4013162496000000, 113241608573209804800000000, 5078594244241245901264634511360000000000, 759796697672599288560347581750936194390876487680000000000, 602809439070636186475532789128702956081602819845966698324215778508800000000000
Offset: 1
For n = 3, there are 3!^3 ways to set up the women's preference profiles and A002860(3) ways to set up the men's preference profiles, where A002860(3) = 12 (there are 12 different Latin squares of order 3). Thus a(3) = 3!^3 * A002860(3) = 216 * 12 = 2592.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A344669
a(n) is the number of preference profiles in the stable marriage problem with n men and n women that generate the maximum possible number of stable matchings.
Original entry on oeis.org
1, 2, 1092, 144, 507254400
Offset: 1
For n=2, there are 16 possible preference profiles: 14 of them generate one stable matching and 2 of them generate two stable matchings. Thus, a(2) = 2.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
A340890
a(n) is the number of preference profiles for n men and n women, where all men prefer the same woman.
Original entry on oeis.org
1, 8, 5184, 1719926784, 990677827584000000, 2495937495082991616000000000000, 58001506007267709490243656115814400000000000000, 23264754073069200132851692722771970253637181903994880000000000000000
Offset: 1
When n=2, the total number of profiles is 16, and in half of them, the same woman is ranked 1st by both men.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
Showing 1-10 of 38 results.
Comments