A185873
Values of k corresponding to the terms of A185584.
Original entry on oeis.org
1, 4, 11, 19, 31, 74, 65, 80, 107, 107, 107, 107
Offset: 1
-
First generate the sequence A185584 using the program supplied there. Then apply this program to that sequence:
Position[Accumulate[Divisors[#]^2],#][[1,1]]&/@ {A185584}
(* Harvey P. Dale, Feb 05 2011 *)
A064510
Numbers m such that the sum of the first k divisors of m is equal to m for some k.
Original entry on oeis.org
1, 6, 24, 28, 496, 2016, 8128, 8190, 42336, 45864, 392448, 714240, 1571328, 33550336, 61900800, 91963648, 211891200, 1931236608, 2013143040, 4428914688, 8589869056, 10200236032, 137438691328, 214204956672
Offset: 1
Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 06 2001
Divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. 1+2+3+4+6+8 = 24.
-
subtract = If[ #1 < #2, Throw[ #1], #1 - #2]&; f[n_] := Catch @ Fold[subtract, n, Divisors @ n]; lst = {}; Do[ If[ f[n] == 0, AppendTo[lst, n]], {n, 10^8}]; lst (* Bobby R. Treat and Robert G. Wilson v, Jul 14 2005 *)
Select[Range[2000000],MemberQ[Accumulate[Divisors[#]],#]&] (* Harvey P. Dale, Mar 22 2012 *)
-
isok(n) = {my(d = divisors(n)); my(k = 1); while ((k <= #d) && ((sd = sum(j=1, k, d[j])) != n), k++;); (sd == n);} \\ Michel Marcus, Jan 16 2014
A185960
Positive numbers equal to the sum of the cubes of their first k divisors for some k.
Original entry on oeis.org
1, 36, 126144, 236736, 934902, 3447632, 11877300, 67885860, 163704304, 1317560094, 1483434161, 5178258504, 8025266717, 12097787616, 16631037162, 25248156920, 110341933344, 145437730020, 718690577744
Offset: 1
- Arie Groeneveld, Posting to Sequence Fans Mailing List, Feb 06, 2011
-
for(n=1, 67885860, nd=numdiv(n); if(nd<>2, d=divisors(n); s=0; for(j=1, nd, s=s+d[j]^3; if(s>=n, if(s==n, print1(n ", ")); next(2))))) \\ Donovan Johnson, Jan 21 2014
A318528
a(n) = least number > 1 that equals the sum of the n-th powers of its first k divisors for some k.
Original entry on oeis.org
6, 130, 36, 41860, 276, 1015690, 2316, 921951940, 20196, 10009766650, 179196, 2387003305930334914, 1602516, 100006103532010, 14381676, 1880100018939820249188604888836, 129271236, 1000003814697527770, 1162785756, 19105043663614041367780, 10462450356, 10000002384185795209930, 94151567436, 226500219158007133816826003223992308820431641700
Offset: 1
a(2) = 130 since 130 has the divisors 1, 2, 5, 10, ... and 1^2 + 2^2 + 5^2 + 10^2 = 130.
-
a[k_] := Module[{n = 2}, While[! MemberQ[Accumulate[Divisors[n]^k], n], n++]; n]; Do[Print[a[n]], {n, 1, 10}]
-
a(n) = for(x=2, oo, my(div=divisors(x), s=0); for(k=1, #div, s=sum(i=1, k, div[i]^n); if(s==x, return(x)))) \\ Felix Fröhlich, Aug 28 2018
A185961
Let d_1=1 < d_2 < d_3 < ... be the divisors of n; sequence lists positive numbers n such that for some k, n = 2(d_1 + ... + d_k).
Original entry on oeis.org
2, 6, 12, 28, 40, 48, 224, 234, 496, 960, 8128, 47616, 174592, 10371840, 15037440, 28090368, 33550336, 134209536, 207516672, 492101632, 1150402560, 8589869056, 59205411720, 137438691328
Offset: 1
- Arie Groeneveld, Posting to Sequence Fans Mailing List, Feb 06, 2011
-
forstep(n=2, 33550336, 2, d=divisors(n); s=0; for(j=1, numdiv(n), s=s+2*d[j]; if(s>=n, if(s==n, print1(n ", ")); next(2)))) \\ Donovan Johnson, Jan 24 2014
A194578
Numbers n such that the sum of the first k divisors of n^2+1 is equal to n for some k.
Original entry on oeis.org
1, 3, 43, 68, 93, 228, 612, 1903, 32292, 44868, 252072, 36564198, 55862807, 134735264
Offset: 1
The divisors of 43^2 + 1 are {1, 2, 5, 10, 25, 37, 50, 74, 185, 370, 925, 1850} and 1+2+5+10 + 25 = 43, hence 43 is in the list.
Showing 1-6 of 6 results.
Comments