cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185940 a(n) = 1 - 2^(n+1) + 3^(n+2).

Original entry on oeis.org

24, 74, 228, 698, 2124, 6434, 19428, 58538, 176124, 529394, 1590228, 4774778, 14332524, 43013954, 129074628, 387289418, 1161999324, 3486260114, 10459304628, 31378962458, 94138984524, 282421147874, 847271832228, 2541832273898, 7625530376124, 22876658237234
Offset: 1

Views

Author

Amir H. Farrahi, Feb 06 2011

Keywords

Crossrefs

Programs

  • Magma
    [1 - 2^(n+1) + 3^(n+2): n in [1..40]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    A185940:=n->1-2^(n+1)+3^(n+2): seq(A185940(n), n=1..40); # Wesley Ivan Hurt, Jul 23 2017
  • Mathematica
    CoefficientList[Series[-2*x*(12 - 35*x + 24*x^2)/(-1 + 6*x - 11*x^2 + 6*x^3), {x,0,50}], x] (* or *) LinearRecurrence[{6, -11, 6}, {24, 74, 228}, 50] (* G. C. Greubel, Feb 25 2017 *)
  • PARI
    x='x+O('x^50); Vec(-2*x*(12 - 35*x + 24*x^2) / (-1 + 6*x - 11*x^2 + 6*x^3)) \\ G. C. Greubel, Feb 25 2017

Formula

a(n) = 1 - A000079(n+1) + A000244(n+2)
From Alexander R. Povolotsky, Jan 07 2011: (Start)
G.f.: 2*x*(12 - 35*x + 24*x^2) / (1 - 6*x + 11*x^2 - 6*x^3)
a(n+2) = -6*a(n) + 5*a(n+1)+2. (End)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - G. C. Greubel, Feb 25 2017
E.g.f.: exp(x) - 2*exp(2*x) + 9*exp(3*x) - 8. - G. C. Greubel, Jul 23 2017

Extensions

Corrected and edited by Bruno Berselli, Apr 04 2011