cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A057863 a(n) = Product_{k=1..n} (2k-1)!!.

Original entry on oeis.org

1, 1, 3, 45, 4725, 4465125, 46414974375, 6272287562165625, 12714083695698776015625, 438120013555654794702228515625, 286849911214281324754704976473779296875, 3943988517696329309474874414036059896739501953125
Offset: 0

Views

Author

Keywords

Comments

a(n) is the coefficient of the closed form for BarnesG[(2n-1)/2].
a(n) is the hook product corresponding to the partition (n,n-1,...,2,1). a(n)=(n(n+1)/2)!/A005118(n+1). - Emeric Deutsch, May 21 2004
Hankel transform of A185998. - Paul Barry, Feb 08 2011
The Burchnall-Chaundy polynomials P_n(z) have leading term z^(n^2+n)/a(n). - Michael Somos, Jan 18 2023

Examples

			G.f. = 1 + x + 3*x^2 + 45*x^3 + 4725*x^4 + 4465125*x^5 + ... - _Michael Somos_, Jan 18 2023
		

Crossrefs

Programs

  • Maple
    a:= n-> mul((2*k+1)^(n-k), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Nov 28 2012
  • Mathematica
    a[n_] := Product[2^i Gamma[1/2+i]/Sqrt[Pi], {i, n}]
    Table[Product[(2*k+1)^(n-k),{k,0,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
    Table[Product[(2k-1)!!,{k,1,n}],{n,0,10}] (* Vaclav Kotesovec, Nov 13 2014 *)
    Table[2^(n(n+1)/2-1/24) Glaisher^(3/2) Pi^(-n/2-1/4) E^(-1/8) BarnesG[n+3/2], {n, 0, 10}] (* Vladimir Reshetnikov, Nov 06 2015 *)
    Table[Sqrt[BarnesG[2*n + 2]] / (2^(n^2/2) * BarnesG[n+1] * Sqrt[Gamma[n+1]]), {n, 0, 12}] (* Vaclav Kotesovec, Apr 08 2021 *)
  • PARI
    a(n)=prod(k=0,n-1,prod(i=0,k,2*i+1))

Formula

a(n) = Product_{k=0..n} (2*k+1)^(n-k).
a(n) ~ A^(1/2) * 2^(n^2/2+n+5/24) * n^(n^2/2+n/2+1/24) / exp(3*n^2/4+n/2+1/24), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
a(n) = 2^(n*(n+1)/2-1/24) * A^(3/2) * Pi^(-n/2-1/4) * exp(-1/8) * G(n+3/2), where A is the Glaisher-Kinkelin constant, G is the Barnes G-function. - Vladimir Reshetnikov, Nov 06 2015
a(n) = sqrt(G(2*n+2)) / (2^(n^2/2) * G(n+1) * sqrt(Gamma(n+1))), where G is the Barnes G-function. - Vaclav Kotesovec, Apr 08 2021
From Michael Somos, Jan 18 2023: (Start)
a(n) = (-1)^floor((n+1)/2)*a(-1-n) for all n in Z.
a(n+1)*a(n-1) = (2*n+1)*a(n)^2 for all n in Z.
(4*n + 8)*a(n+1)^2*a(n+2)^2 = a(n)*a(n+2)^3 + a(n+1)^3*a(n+3) for all n in Z.(End)
a(n) = (1/2^(n*(n-1)/2)) * A086205(n). - Peter Bala, Feb 20 2023

Extensions

Simpler description from Benoit Cloitre, May 03 2003
Definition and programs corrected by Vaclav Kotesovec, Nov 13 2014

A185997 Inverse of coefficient array of orthogonal polynomials P(n,x)=(x-2n+2)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1, P(1,x)=x-1.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 11, 7, 1, 16, 48, 44, 13, 1, 64, 244, 289, 129, 21, 1, 308, 1419, 2045, 1210, 306, 31, 1, 1727, 9281, 15649, 11447, 3937, 627, 43, 1, 11008, 67236, 129112, 111890, 48586, 10680, 1156, 57, 1, 78244, 532816, 1143134, 1140554, 596698, 168102, 25293, 1969, 73, 1, 611060, 4573278, 10808122, 12163344, 7427056, 2555941, 497215, 53954, 3154, 91, 1
Offset: 0

Views

Author

Paul Barry, Feb 08 2011

Keywords

Examples

			Triangle begins:
  1,
  1, 1,
  2, 3, 1,
  5, 11, 7, 1,
  16, 48, 44, 13, 1,
  64, 244, 289, 129, 21, 1,
  308, 1419, 2045, 1210, 306, 31, 1,
  1727, 9281, 15649, 11447, 3937, 627, 43, 1,
  11008, 67236, 129112, 111890, 48586, 10680, 1156, 57, 1,
  78244, 532816, 1143134, 1140554, 596698, 168102, 25293, 1969, 73, 1
Production matrix begins:
  1, 1,
  1, 2, 1,
  0, 3, 4, 1,
  0, 0, 5, 6, 1,
  0, 0, 0, 7, 8, 1,
  0, 0, 0, 0, 9, 10, 1,
  0, 0, 0, 0, 0, 11, 12, 1,
  0, 0, 0, 0, 0, 0, 13, 14, 1,
  0, 0, 0, 0, 0, 0, 0, 15, 16, 1
		

Crossrefs

Cf. A178121.
Inverse is A185996. First column is A185998.
Showing 1-2 of 2 results.