2, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 50, 61, 77, 94, 117, 141, 173, 208, 253, 302, 363, 431, 516, 609, 723, 850, 1003, 1174, 1379, 1607, 1878, 2181, 2537, 2936, 3404, 3925, 4532, 5212, 5998, 6877, 7890, 9021, 10320, 11771, 13427, 15277, 17385, 19734, 22401, 25375, 28739, 32485
Offset: 0
G.f.: 2 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + 14*x^7 + 19*x^8 + ...
G.f.: 2/(1-x) + x^2*(1+x)/((1-x)*(1-x^2)) + x^4*(1+x)/((1-x)*(1-x^2)*(1-x^3)) + x^6*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + x^9*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + x^12*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)) + ... - _Paul D. Hanna_, Jul 06 2013
From _Joerg Arndt_, Jun 01 2013: (Start)
##: set perimeter sum(perimeter)
00: ....... ....... 0 (empty set)
01: ......1 ......1 0
02: .....1. .....1. 1
03: .....11 .....11 1
04: ....1.. ....1.. 2
05: ....1.1 ....1.1 2
06: ....11. ....11. 3
07: ....111 ....1.1 2
08: ...1... ...1... 3
09: ...1..1 ...1..1 3
10: ...1.1. ...1.1. 4
11: ...1.11 ...1.11 4
12: ...11.. ...11.. 5
13: ...11.1 ...11.1 5
14: ...111. ...1.1. 4
15: ...1111 ...1..1 3
16: ..1.... ..1.... 4
17: ..1...1 ..1...1 4
18: ..1..1. ..1..1. 5
19: ..1..11 ..1..11 5
20: ..1.1.. ..1.1.. 6
21: ..1.1.1 ..1.1.1 6
22: ..1.11. ..1.11. 7
23: ..1.111 ..1.1.1 6
24: ..11... ..11... 7
25: ..11..1 ..11..1 7
26: ..11.1. ..11.1. 8
27: ..11.11 ..11.11 8
28: ..111.. ..1.1.. 6
29: ..111.1 ..1.1.1 6
30: ..1111. ..1..1. 5
31: ..11111 ..1...1 4
The last set contribution to a(n) n has index 2^(n+1)-1, so the statistics is complete up to 4.
We find a(1)=2, a(1)=2, a(2)=2, and a(4)=6.
(End)
The six sets {4}, {0,4}, {1,3}, {0,1,3}, {1,2,3}, and {0,1,2,3,4}, and no others, have perimeter 4, so a(4)=6.
From _Joerg Arndt_, Jun 01 2013: (Start)
There are a(9) = 24 partitions of 9 into two sorts of parts such that no two successive parts are of same sort (format "P:S" for "part:sort"):
01: [ 1:0 1:1 2:0 2:1 3:0 ]
02: [ 1:0 1:1 2:0 5:1 ]
03: [ 1:0 1:1 3:0 4:1 ]
04: [ 1:0 1:1 7:0 ]
05: [ 1:0 2:1 3:0 3:1 ]
06: [ 1:0 2:1 6:0 ]
07: [ 1:0 3:1 5:0 ]
08: [ 1:0 8:1 ]
09: [ 2:0 2:1 5:0 ]
10: [ 2:0 3:1 4:0 ]
11: [ 2:0 7:1 ]
12: [ 3:0 6:1 ]
13: [ 4:0 5:1 ]
14: [ 9:0 ]
15: [ 1:1 2:0 2:1 4:0 ]
16: [ 1:1 2:0 6:1 ]
17: [ 1:1 3:0 5:1 ]
18: [ 1:1 4:0 4:1 ]
19: [ 1:1 8:0 ]
20: [ 2:1 3:0 4:1 ]
21: [ 2:1 7:0 ]
22: [ 3:1 6:0 ]
23: [ 4:1 5:0 ]
24: [ 9:1 ]
There are A227134(9)=14 and A227135(9)= 10 such partitions where the first part is respectively of sort 0 and 1.
The corresponding sets and perimeters are (format as in first example)
0042: .....1.1.1. .....1.1.1. 9
0043: .....1.1.11 .....1.1.11 9
0046: .....1.111. .....1.1.1. 9
0048: .....11.... .....11.... 9
0049: .....11...1 .....11...1 9
0058: .....111.1. .....1.1.1. 9
0059: .....111.11 .....1.1.11 9
0070: ....1...11. ....1...11. 9
0072: ....1..1... ....1..1... 9
0073: ....1..1..1 ....1..1..1 9
0079: ....1..1111 ....1..1..1 9
0120: ....1111... ....1..1... 9
0121: ....1111..1 ....1..1..1 9
0132: ...1....1.. ...1....1.. 9
0133: ...1....1.1 ...1....1.1 9
0135: ...1....111 ...1....1.1 9
0252: ...111111.. ...1....1.. 9
0253: ...111111.1 ...1....1.1 9
0258: ..1......1. ..1......1. 9
0259: ..1......11 ..1......11 9
0510: ..11111111. ..1......1. 9
0512: .1......... .1......... 9
0513: .1........1 .1........1 9
1023: .1111111111 .1........1 9
(End)
From _Patrick Devlin_, Jul 03 2013: (Start)
The six sets {4}, {0,4}, {1,3}, {0,1,3}, {1,2,3}, and {0,1,2,3,4}, and no others, have perimeter 4, so a(4)=6. These sets correspond to the labeled partitions (allowing 0 as a part) [4E], [0E, 4E], [1E, 3E], [0E, 1F, 3E], [1E, 3F], and [0E, 4F] (respectively).
To explain this bijection further, the partition itself (e.g., 32 = 0 + 2 + 4 + 5 + 9 + 12) corresponds to which integers of the set will contribute to the perimeter. Thus, this unlabeled partition of 32 corresponds to the family of sets of the form {0, ??, 2, ??, 4, 5, ??, 9, ??, 12}. Then we only need to decide for each gap (here represented as ??) whether or not to fill it in ("F") with the corresponding string of consecutive integers or to leave it empty ("E"). This decision making process is equivalent to labeling each integer immediately following a gap with "F" or "E" (to denote if the gap is filled or empty) subject to the four 'rules' above [Rules (ii) and (iii) force the appropriate labelings for places where there are no gap (in this example, before 0 and before 5). And rule (iv) ensures that consecutive gaps are not both filled (in order to preserve the 'boundary' of the set).].
In the unlabeled example 32 = 0 + 2 + 4 + 5 + 9 + 12, as we begin to label, rules (ii) and (iii) force us to have [0E, 2?, 4?, 5F, 9?, 12?]. Then since we may not have two consecutive labels of "F", we are forced to have [0E, 2?, 4E, 5F, 9E, 12?]. We can then label 2 as either "F" or "E" (which determines whether or not 1 is in the set), and we can independently label 12 as "F" or "E" (which determines whether or not {10, 11} is in the set). For instance, the labeling [0E, 2E, 4E, 5F, 9E, 12F] corresponds to the set {0, 2, 4, 5, 9, 10, 11, 12}, which has perimeter 32.
Given an unlabeled partition, after the partially labeling that's forced to satisfy rules (ii), (iii), and (iv), then the number of ways to extend this partial labeling to a valid labeling is related to the Fibonacci numbers (in a clear but perhaps useless way).
Noting that a(n) is the same as counting these 'labeled partitions' (allowing 0 as a part) may help prove the conjecture of Arndt [namely that a(n) = A227134(n) + A227135(n)].
(End)
Comments