cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A186690 Expansion of - (1/8) theta_3''(0, q) / theta_3(0, q) in powers of q.

Original entry on oeis.org

1, -2, 4, -4, 6, -8, 8, -8, 13, -12, 12, -16, 14, -16, 24, -16, 18, -26, 20, -24, 32, -24, 24, -32, 31, -28, 40, -32, 30, -48, 32, -32, 48, -36, 48, -52, 38, -40, 56, -48, 42, -64, 44, -48, 78, -48, 48, -64, 57, -62, 72, -56, 54, -80, 72, -64, 80, -60, 60, -96, 62, -64
Offset: 1

Views

Author

Michael Somos, Feb 25 2011

Keywords

Comments

If A(x) is the generating function then 1 / Pi = 8 A( exp( -Pi) ). [Plouffe, equation 1.2]
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 2*q^2 + 4*q^3 - 4*q^4 + 6*q^5 - 8*q^6 + 8*q^7 - 8*q^8 + 13*q^9 + ...
		

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Equation (5.1.29.8).

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1/8) (EllipticE[m] - (1 - m) EllipticK[m]) EllipticK[m]/(Pi/2)^2, {q, 0, n}]];
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, d / gcd(d, 2)))};
    
  • Python
    from math import prod
    from sympy import factorint
    def A186690(n): return (1 if n&1 else -1)*prod((p**(e+1)-1)//(p-1) if p&1 else 1<Chai Wah Wu, Jun 23 2024

Formula

Multiplicative with a(2^e) = -(2^e) if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 2.
Expansion of (E - (1 - k^2) * K) * K / (2 Pi^2) in powers of the nome q where K, E are complete elliptic integrals.
Expansion of (1/2) x (d phi(x) / dx) / phi(x) in powers of x where phi() is a Ramanujan theta function.
G.f.: Sum_{k>0} - (-1)^k * k * x^k / (1 - x^(2*k)) = Sum_{k>0} x^(2*k-1) / (1 + x^(2*k-1))^2 = (Sum_{k>0} n^2 x^(n^2)) / (Sum_k x^(n^2)).
Dirichlet g.f. zeta(s) *zeta(s-1) *(1-7*2^(-s)+14*4^(-s)-8^(1-s)) / (1-2^(1-s)). - R. J. Mathar, Jun 01 2011
a(n) = -(-1)^n * A002131(n).
MOBIUS transform is A186111. - Michael Somos, Apr 25 2015

A186813 a(n) = n if n odd, a(2n) = 3n if n odd, a(4n) = 2n.

Original entry on oeis.org

0, 1, 3, 3, 2, 5, 9, 7, 4, 9, 15, 11, 6, 13, 21, 15, 8, 17, 27, 19, 10, 21, 33, 23, 12, 25, 39, 27, 14, 29, 45, 31, 16, 33, 51, 35, 18, 37, 57, 39, 20, 41, 63, 43, 22, 45, 69, 47, 24, 49, 75, 51, 26, 53, 81, 55, 28, 57, 87, 59, 30, 61, 93, 63, 32, 65, 99, 67, 34, 69, 105, 71, 36
Offset: 0

Views

Author

Michael Somos, Feb 27 2011

Keywords

Examples

			G.f. = x + 3*x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 9*x^6 + 7*x^7 + 4*x^8 + 9*x^9 + ...
		

Crossrefs

Cf. A187601. - Bruno Berselli, Mar 12 2011

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x)*(1+x^3)/((1-x)*(1+x^2))^2)); // G. C. Greubel, Aug 14 2018
  • Mathematica
    CoefficientList[Series[x(1+x)(1+x^3)/((1-x)(1+x^2))^2,{x,0,80}],x] (* Harvey P. Dale, Mar 06 2011 *)
    a[ n_] := n/2 {2, 3, 2, 1}[[ Mod[ n, 4, 1]]]; (* Michael Somos, May 04 2015 *)
  • PARI
    {a(n) = n/2 * [1, 2, 3, 2][n%4 + 1]};
    
  • PARI
    {a(n) = sign(n) * polcoeff( x * (1 + x) * (1 + x^3) / ((1 - x) * (1 + x^2))^2 + x * O(x^abs(n)), abs(n))};
    

Formula

a(n) is multiplicative with a(2) = 3, a(2^e) = 2^(e-1) if e>1, a(p^e) = p^e if p>2.
Euler transform of length 6 sequence [3, -3, 1, 2, 0, -1].
G.f.: x * (1 + x) * (1 + x^3) / ((1 - x) * (1 + x^2))^2.
G.f.: x * (1 - x^2)^3 * (1 - x^6) / ((1 - x)^3 * (1 - x^3) * (1 - x^4)^2). - Michael Somos, May 04 2015
G.f.: f(x) - f(-x^2) where f(x) := x/(1-x)^2. - Michael Somos, May 04 2015
a(n) = -a(-n) for all n in Z. a(n) = n/2 * A068073(n).
a(n) = n*(4-i^n-(-i)^n)/4 with i=sqrt(-1). - Bruno Berselli, Mar 10 2011
a(n) = A134172(n) + A134172(n+1). - Michael Somos, May 04 2015
a(n) = -(-1)^n * A186111(n). - Michael Somos, May 07 2015
a(n) = n - n*cos(n*Pi/2)/2. - Wesley Ivan Hurt, May 05 2021
Dirichlet g.f.: zeta(s-1) * (1 + 1/2^s - 1/4^(s-1)). - Amiram Eldar, Oct 26 2023
Showing 1-2 of 2 results.