cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186421 Even numbers interleaved with repeated odd numbers.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 6, 3, 8, 5, 10, 5, 12, 7, 14, 7, 16, 9, 18, 9, 20, 11, 22, 11, 24, 13, 26, 13, 28, 15, 30, 15, 32, 17, 34, 17, 36, 19, 38, 19, 40, 21, 42, 21, 44, 23, 46, 23, 48, 25, 50, 25, 52, 27, 54, 27, 56, 29, 58, 29, 60, 31, 62, 31, 64, 33, 66, 33, 68, 35, 70, 35, 72, 37, 74, 37, 76, 39, 78, 39, 80, 41, 82, 41, 84, 43, 86, 43
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2011

Keywords

Comments

A005843 interleaved with A109613.
Row sum of superimposed binary filled triangle. - Craig Knecht, Aug 07 2015

Examples

			A005843: 0   2   4   6   8   10   12   14   16   18   20    22
A109613:   1   1   3   3   5    5    7    7    9    9    11    11
this   : 0 1 2 1 4 3 6 3 8 5 10 5 12 7 14 7 16 9 18 9 20 11 22 ... .
		

Crossrefs

Cf. A186422 (first differences), A186423 (partial sums), A240828 (row sum of superimposed binary triangle).

Programs

  • Haskell
    a186421 n = a186421_list !! n
    a186421_list = interleave [0,2..] $ rep [1,3..] where
       interleave (x:xs) ys = x : interleave ys xs
       rep (x:xs) = x : x : rep xs
    
  • Magma
    [IsEven(n) select n else 2*Floor(n/4)+1: n in [0..100]]; // Vincenzo Librandi, Jul 13 2015
    
  • Maple
    A186421:=n->n-(1-(-1)^n)*(n+(-1)^(n*(n+1)/2))/4: seq(A186421(n), n=0..100); # Wesley Ivan Hurt, Aug 07 2015
  • Mathematica
    Table[n - (1 - (-1)^n)*(n + I^(n (n + 1)))/4, {n, 0, 87}] (* or *)
    CoefficientList[Series[x (1 + 2 x + 2 x^3 + x^4)/((1 + x^2) (x - 1)^2 (1 + x)^2), {x, 0, 87}], x] (* or *)
    n = 88; Riffle[Range[0, n, 2], Flatten@ Transpose[{Range[1, n, 2], Range[1, n, 2]}]] (* Michael De Vlieger, Jul 14 2015 *)
  • Maxima
    makelist(n-(1-(-1)^n)*(n+%i^(n*(n+1)))/4, n, 0, 90); /* Bruno Berselli, Mar 04 2013 */
    
  • Python
    def A186421(n): return (n>>1)|1 if n&1 else n # Chai Wah Wu, Jan 31 2023

Formula

a(2*k) = 2*k, a(4*k+1) = a(4*k+3) = 2*k+1.
a(n) = n if n is even, else 2*floor(n/4)+1.
a(2*n-(2*k+1)) + a(2*n+2*k+1) = 2*n, 0 <= k < n.
a(n+2) = A109043(n) - a(n).
G.f.: x*(1+2*x+2*x^3+x^4) / ( (1+x^2)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Feb 23 2011
a(n) = n-(1-(-1)^n)*(n+i^(n(n+1)))/4, where i=sqrt(-1). - Bruno Berselli, Feb 23 2011
a(n) = a(n-2)+a(n-4)-a(n-6) for n>5. - Wesley Ivan Hurt, Aug 07 2015
E.g.f.: (x*cosh(x) + sin(x) + 2*x*sinh(x))/2. - Stefano Spezia, May 09 2021

Extensions

Edited by Bruno Berselli, Mar 04 2013