cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186707 Partial sums of A007202 (crystal ball sequence for hexagonal close-packing).

Original entry on oeis.org

1, 14, 71, 224, 547, 1134, 2101, 3584, 5741, 8750, 12811, 18144, 24991, 33614, 44297, 57344, 73081, 91854, 114031, 140000, 170171, 204974, 244861, 290304, 341797, 399854, 465011, 537824, 618871, 708750, 808081, 917504, 1037681, 1169294, 1313047, 1469664
Offset: 0

Views

Author

Jonathan Vos Post, Feb 25 2011

Keywords

Comments

Subsequence of primes begins 71, 547, 5741, 114031, 244861, 465011, 808081, 1037681. Subsequence of powers includes 537824 = 2^5 * 7^5.
The sequence is a quasipolynomial, so under the Bunyakovsky conjecture there are infinitely many primes in this sequence. - Charles R Greathouse IV, Aug 21 2011
Let s(0) = 0 and s(n) = A186707(n-1) for n > 0. Then s(n) is the number of 4-tuples (w,x,y,z) having all terms in {1, ..., n} and |w - x| < w + |y - z|. - Clark Kimberling, May 24 2012

Crossrefs

Cf. A007202.

Programs

  • Magma
    [7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16: n in [0..40] ]; // Vincenzo Librandi, Aug 22 2011
  • Mathematica
    CoefficientList[Series[ (-1-10 x-20 x^2-10 x^3-x^4)/((x-1)^5 (1+x)),{x,0,40}],x]  (* Harvey P. Dale, Apr 04 2011 *)
    Table[7*n*(n^3 + 4*n^2 + 6*n + 4)/8 + (15 + (-1)^n)/16, {n, 0, 40}] (* T. D. Noe, Apr 04 2011 *)
  • PARI
    a(n)=7*n*(n^3+4*n^2+6*n+4)/8+(15+(-1)^n)/16 \\ Charles R Greathouse IV, Aug 21 2011
    

Formula

From R. J. Mathar, Mar 24 2011: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) = 7*n*(n^3/8 + n^2/2 + 3*n/4 + 1/2) + (15 + (-1)^n)/16.
G.f.: ( -1 - 10*x - 20*x^2 - 10*x^3 - x^4 ) / ( (1 + x)*(x - 1)^5 ). (End)
E.g.f.: (cosh(x) + 7*exp(x)*(1 + 15*x + 25*x^2 + 10*x^3 + x^4))/8. - Franck Maminirina Ramaharo, Nov 09 2018