cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201862 Number of ways to place k nonattacking bishops on an n X n board, sum over all k>=0.

Original entry on oeis.org

1, 2, 9, 70, 729, 9918, 167281, 3423362, 82609921, 2319730026, 74500064809, 2711723081550, 110568316431609, 5016846683306758, 251180326892449969, 13806795579059621930, 827911558468860287041, 53940895144894708523922, 3799498445458163685753481, 288400498147873552894868886
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2011

Keywords

Comments

Also the number of vertex covers and independent vertex sets of the n X n bishop graph.

Crossrefs

Programs

  • Mathematica
    knbishops[k_,n_]:=(If[n==1,If[k==1,1,0],(-1)^k/(2n-k)!
    *Sum[Binomial[2n-k,n-k+i]*Sum[(-1)^m*Binomial[n-i,m]*m^Floor[n/2]*(m+1)^Floor[(n+1)/2],{m,1,n-i}]
    *Sum[(-1)^m*Binomial[n-k+i,m]*m^Floor[(n+1)/2]*(m+1)^Floor[n/2],{m,1,n+i-k}],{i,Max[0,k-n],Min[k,n]}]]);
    Table[1+Sum[knbishops[k,n],{k,1,2n-1}],{n,1,25}]

Formula

a(n) = A216078(n+1) * A216332(n+1). - Andrew Howroyd, May 08 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 01 2024

A378590 Total number of ways to place k nonattacking bishops on an n X n chess board. Triangle T(n,k) read by rows (0 <= k <= 2*n-[n>0]-[n>1]).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 26, 26, 8, 1, 16, 92, 232, 260, 112, 16, 1, 25, 240, 1124, 2728, 3368, 1960, 440, 32, 1, 36, 520, 3896, 16428, 39680, 53744, 38368, 12944, 1600, 64, 1, 49, 994, 10894, 70792, 282248, 692320, 1022320, 867328, 389312, 81184, 5792, 128
Offset: 0

Views

Author

Eder G. Santos, Dec 01 2024

Keywords

Comments

The sequence counts every possible nonattacking configuration of k bishops on an n x n chess board.

Examples

			Triangle begins:
  1;
  1  1;
  1  4   4;
  1  9  26    26     8;
  1 16  92   232   260    112     16;
  1 25 240  1124  2728   3368   1960     440     32;
  1 36 520  3896 16428  39680  53744   38368  12944   1600    64;
  1 49 994 10894 70792 282248 692320 1022320 867328 389312 81184 5792 128;
  ...
For example, for n = 2, k=2, the T(2,2)=4 nonattacking configurations are:
  +---+---+   +---+---+   +---+---+   +---+---+
  | B | B |   | B |   |   |   | B |   |   |   |
  +---+---+ , +---+---+ , +---+---+ , +---+---+
  |   |   |   | B |   |   |   | B |   | B | B |
  +---+---+   +---+---+   +---+---+   +---+---+
		

Crossrefs

Columns k=0-1 give: A000012, A000290.
Columns k=2-10 for n>=1 give: A172123, A172124, A172127, A172129, A176886, A187239, A187240, A187241, A187242.
Main diagonal T(n,n) gives A002465.
Row sums give A201862.
Cf. A000079.

Programs

  • SageMath
    def stirling2_negativek(n,k):
      if k < 0: return 0
      else: return stirling_number2(n,k)
    print([sum([sum([binomial(floor(n/2),i)*stirling2_negativek(n-i,n-j)*sum([binomial(ceil(n/2),l)*stirling2_negativek(n-l,n-k+j) for l in [0..k-j]]) for i in [0..j]]) for j in [0..k]]) for n in [0..10] for k in [0..2*n-2+kronecker_delta(n,1)+2*kronecker_delta(n,0)]])

Formula

T(n,k) = Sum_{j=0..k} (Sum_{i=0..j} binomial(floor(n/2),i) * Stirling2(n-i,n-j)) * (Sum_{l=0..k-j} binomial(ceiling(n/2),l) * Stirling2(n-l,n-k+j)).
T(n,2*n-2+delta(n,1)+2*delta(n,0)) = A000079(n)-delta(n,1).
Showing 1-2 of 2 results.